Women in engineering

Women are often under-represented in the academic and professional fields of engineering, however, many females have contributed to the diverse fields of engineering historically and currently.[1] A number of organizations and programs have been created to understand and overcome this tradition of gender disparity. Some have decried this gender gap, saying that it indicates the absence of potential talent.[1] Though the gender gap as a whole is narrowing, there is still a growing gap with minority women compared to their white counterparts.[1] Gender stereotypes, low rates of female engineering students, and engineering culture are factors that contribute to the current situation where men are dominated in the engineering field. Relevant statistics from United States, Canada, and United Kingdom will be discussed.


The history of women as designers and builders of machines and structures predates the development of engineering as a trade. Prior to the creation of the term "engineer" in the 11th century, women had contributed to the technological advancement of societies around the globe. By the 19th century, women who participated in engineering work often had academic training in mathematics or science. Ada Lovelace was privately schooled in mathematics before beginning her collaboration with Charles Babbage on his analytical engine that would earn her the designation of the "first computer programmer." In the early years of the 20th century, greater numbers of women began to be admitted to engineering programs, but they were generally looked upon as anomalies by the men in their departments.

The first University to award an engineering's bachelor's degree for women was University of California, Berkeley. Elizabeth Bragg was the recipient of a bachelor's degree in civil engineering in 1876, becoming the first female engineer in the United States.[2] Prior to the 19th century, it was very rare for women to earn bachelor's degree in any field because they did not have the opportunity to enroll in universities due to gender disparities. Some universities started to admit women to their colleges by the early 1800s and by the mid-1800s they started to admit them into all academic programs including engineering.[2]

The entry of the United States into World War II created a serious shortage of engineering talent in that country as men were drafted into the armed forces. To address the shortage, initiatives like GE on-the-job engineering training for women with degrees in mathematics and physics and the Curtiss-Wright Engineering Program among others created new opportunities for women in engineering. Curtiss-Wright partnered with Cornell, Penn State, Purdue, the University of Minnesota, the University of Texas, Rensselaer Polytechnic Institute, and Iowa State University to create an engineering curriculum that lasted ten months and focused primarily on aircraft design and production.[3]

During this time, since the female representation in the engineering field, there were barely public attacks on women. Chiefly, these attacks were kept quiet inside institutions due to the fact that women did not pressure aggressively to shift the gender gap between men and women in the engineering field. Another reason why these “attacks” were kept private is due to how men believed that it was impossible for engineering to stop being a male-dominated field.[4]

Women's roles in the workforce, specifically in engineering fields changed greatly during the Post–World War II period. As women started to marry at later ages, have fewer children, divorce more frequently and stopped depending on male breadwinners for economic support, they started to become even more active in the engineering labor force despite the fact that their salaries were less than men's.[5]

Women also played a crucial role in programming the ENIAC from its construction during the World War II period through the next several decades. Originally recruited by the Army in 1943, female ENIAC programmers made considerable advancements in programming techniques, such as the invention of breakpoints, now a standard debugging tool.[6]

In addition to the wartime shortage of engineers, women also made inroads in engineering fields due to the gradual increase in public universities admitting female students.[7] For example, Georgia Tech began to admit women engineering students in 1952, while the École Polytechnique in Paris, a premier French engineering institution, began to admit female students in 1972.

As a result gender stereotypical roles have changed due to industrialization resolution.

Factors contributing to lower female participation

Gender stereotypes

Stereotype threat may contribute to the under-representation of women in engineering. Because engineering is a traditionally male-dominated field, women may be less confident about their abilities, even when performing equally.[8] At a young age, girls do not express the same level of interest in engineering as boys, possibly due in part to gender stereotypes.[9] There is also significant evidence of the remaining presence of implicit bias against female engineers, due to the belief that men are mathematically superior and better suited to engineering jobs.[9] Implicit Association Test (IAT) shows that subconsciously people connect male with science and female with arts, according to the results from over half a million people around the world between 1998 and 2010. This unconscious stereotype also has negative impact on the performance for female.[10] Women who persist are able to overcome these difficulties, enabling them to find fulfilling and rewarding experiences in the engineering profession.[11]

Due to this gender bias, women's choice in entering an engineering field for college is also highly correlated to the background and exposure they have had with mathematics and other science courses during high school. Most women that do choose to study engineering have significant experience with regarding themselves better at these types of courses and as a result, think they are capable of studying in a male-dominated field.[12]

Women's self-efficacy is also a contributor to the gender stereotype that plays a role in the underrepresentation of women in engineering. Women's ability to think critically that they can be successful and perform accomplishments is correlated to the choices they have when choosing a college career. Women that show high self-efficacy personalities are more prone to choose to study in the engineering field. Self-efficacy is also correlated to gender roles because men often present higher self-efficacy than women, which can also be a cause to why when choosing a major, most women opt to not choose the engineering major.[12]

Lower rates of female students in engineering degree programs

Over the past few years 40 percent of women are leaving the engineering field, there are many factors leading to why they don't go into engineering because of women being judged about going into a difficult major such as engineering, working in difficult workplace conditions. According to the Society of Women Engineers[13] one in four female leave the field after a certain age.

Women are under-represented in engineering education programs as in the workforce (see Statistics). Enrollment and graduation rates of women in post-secondary engineering programs are very important determinants of how many women go on to become engineers. Because undergraduate degrees are acknowledged as the "latest point of standard entry into scientific fields", the under-representation of women in undergraduate programs contributes directly to under-representation in scientific fields.[14] Additionally, in the United States, women who hold degrees in science, technology, and engineering fields are less likely than their male counterparts to have jobs in those fields.[15]

This degree disparity varies across engineering disciplines. Women tend to be more interested in the engineering disciplines that have societal and humane developments, such as agricultural and environmental engineering. They are therefore well-represented in environmental and biomedical engineering degree programs, receiving 40-50% of awarded degrees in the U.S. (2014–15), women are far less likely to receive degrees in fields like mechanical, electrical and computer engineering.[15][16]

A study made by the Harvard Business Review discussed the reasons why the rates of women representation in the engineering field are still low. The study discovered that rates of female students in engineering programs are continuous because of the collaboration aspects in the field. The results of the study chiefly determined how women are treated differently in group works in which there are more male than female members and how male members “excluded women from the real engineering work”. Aside from this, women in this study also described how professors treated female students differently “just because they were women”.[17]

Despite the fact that fewer women enroll in engineering programs across the nation, the representation of women in STEM-based careers can potentially increase when college and university administrators work on implementing mentoring programs and work-life policies for women. Research shows that these rates have a hard time increasing since women are judged as less competent than men to perform supposedly “masculine jobs”.[18]

Engineering culture

Another possible reason for lower female participation in engineering fields is the prevalence of values "associated with the male gender role" in workplace culture.[16] For example, some women in engineering have found it difficult to re-enter the workforce after a period of absence. Because men are less likely to take time off to raise a family, this disproportionately affects women.[19]

Males are also associated with taking leadership roles in the workplace. By holding a position of power over the women, they may create an uncomfortable environment for them. For example, lower pay, more responsibilities, less appreciation as compared to men. However, women actually have more potential to become good leaders. Studies have indicated that females have more key leadership skills, for example, the ability to motivate employees, build relationships, and take initiatives. [20]

Communication is also a contributing factor to the divide between men and women in the workplace. A male to male communication is said to be more direct,[21] but when a man explains a task to a woman, they tend to talk down, or “dumb down” terms. This comes from the stereotype that men are more qualified than women for engineering, causing men to treat women as inferiors instead of equals.

Part of the male dominance in the engineering field is explained by their perception towards engineering itself. A study in 1964 found that both women and men believed that engineering was in fact masculine.[22]

The masculinity dominating engineering majors and fields proves the issues that men themselves believe that they “naturally” excel in fields related to mathematics and sciences while women “naturally” excel in linguistics and liberal arts. In the past few decades, women's representation in the workforce in STEM fields, specifically engineering, has significantly improved. In 1960 women made up around 1% of all the engineers and by the year 2000 women have made up 11% of all engineers.[18]

Several colleges and universities nationwide want to decrease the gender gap between men and women in the engineering field by recruiting more women into their programs. The strategies used for recruiting more female undergraduate students are: increasing women's exposure to stem-courses during high school, planting the idea of positivism relating gender from the engineering culture, producing a more female-friendly environment inside and outside the classroom. These strategies have helped institutions encourage more women to enroll in engineering programs as well as other STEM-based majors. For universities to encourage women to enroll in their graduate programs, institutions have to emphasize the importance of recruiting women, emphasize the importance of STEM education in the undergraduate level, offer financial aid, and develop more efficient methods for recruiting women to their programs.[23]


Percentage of female undergraduate students with engineering degree in Australia, Canada, the UK, and US[16][24][25][26][27]
Country% of womenyear
United Kingdom17.57%2016-2017
United States19.7%2015-2016

United States

In 2014, there were 7.9% female freshmen among all first-year students planing to study in STEM (science, technology, engineering, and mathematics) related majors. In comparison, 26.9% male freshmen intended to major in STEM. For female students who chose engineering, there are over 32% who decided to switch to a different major. [28]

Since 1997, the percentage of Asian females enrolling in engineering majors has risen from about 30% to 34% but somehow also dropped in 2002. African American females have increased their representation in engineering from 21% to 33% in the same time frame. Mexican American (Chicana) and Puerto Rican females have had an increase in their representation from 25% to 31%. Even if ethnicities are included in these statistics, men from all ethnicities still outnumber the proportion of women who enroll in engineering bachelor programs.[23]

The percentage of master's degrees awarded to women has not changed much from 2003 (22.3%) to 2012 (23.1%).[29] The percentage of doctoral degrees awarded to women in engineering increased from 11.6% in 1995, to 17.4% in 2004,[30] to 21.1% in 2008,[31] then to 22.2% in 2012.[29]

There is a significant drop-off rate regarding the number of women who earn a bachelor's degree and the women who afterward enroll in graduate school. Over the last 35 years, women have been more likely than men to enroll in graduate school right after receiving their bachelor's degree. Women who do not enroll in a graduate program right after earning their bachelor's degree tend to be caregivers who face work-family conflicts in the context of family women.[32] The workforce remains the area of lowest representation for women. There were 13% female engineers in 2016. Usually, the salary of female engineers is 10% less than male engineers.[33]The retention of female engineers is also disproportionally low; in 2006, 62.6% of qualified male engineers were employed in engineering professions, as opposed to 47.1% of qualified female engineers.[34]


Though women tend to make up more than half of the undergraduate population in Canada, the number of women in engineering is disproportionately low.[35] In 2017, 21.8 per cent of undergraduate engineering students were women, and 20.6 per cent of undergraduate engineering degrees were awarded to women.[36] The enrollment of women in engineering climbed from 16 per cent in 1991 to over 20 per cent in 2001, but by 2009 this number had fallen to 17 percent.[35] One commentator attributed this drop to a number of factors, such as the failure of higher education programs to explain how engineering can improve others' lives, a lack of awareness of what engineers do, lack of networking opportunities and discomfort of being in a male-dominated environment and the perception that women must adapt to fit in.[35]

In the 1990s, undergraduate enrollment of women in engineering fluctuated from 17 to 18 per cent, while in 2001, it rose to 20.6 per cent.[37] In 2010, 17.7 per cent of students in undergraduate engineering were women.[38]

2016 percentage of women enrolled in tertiary education programs in Canada[38]
British Columbia16.5%27.5%27.5%
New Brunswick15.9%19.3%19.3%
Newfoundland and Labrador20.9%20.6%20.6%
Northwest Territories
Nova Scotia18.7%15.8%15.8%
Prince Edward Island
Yukon Territory

In 2017, the disciplines with the highest proportion of undergraduates who are women were environmental, biosystems, and geological engineering.[38] Four out of the five disciplines with the largest percentages of undergraduate who are women were also the disciplines with the least number of overall undergraduate students enrolled. The lowest proportion of women were found in mechanical (14.2 per cent), software (14.6 per cent), and computer engineering (14.8 per cent).[39]

The number of women enrolled in undergraduate, graduate, and doctoral engineering programs tends to vary by province, with the proportion in Newfoundland and Labrador, Prince Edward Island, and Alberta.[40]

The percentage of engineering faculty who are women increased from 13.4 per cent in 2013 to 15.5 per cent in 2017.[38] The University of Toronto has the highest number of female professors in Canada (21) and École Polytechnique de Montréal (18), University of Waterloo (17) and the University of British Columbia (16).[38]

CCWE1992 goals for 1997 and actual 2009 percentage of women involved in engineering in Canada[41]
Women in...19972009
1st year undergraduate25-25%
Undergraduate programs17.4%
Master's studies20%24.1%
Doctoral studies10%22%
Faculty members: professors5%Full: 7%
Associate: 11%
Assistant: 18%
Eng. degree graduates18%17.6%

In 2011, the INWES (International Network of Women Engineers and Scientists) Education and Research Institute (ERI) held a national workshop, Canadian Committee of Women in Engineering (CCWE+20), to determine ways of increasing the number of women in the engineering field in Canada.[42] CCWE+20 identified a goal of increasing women's interest in engineering by 2.6 percent by 2016 to a total of 25 percent through more incentives such as through collaboration and special projects.[42] The workshop identifies early education as one of the main barriers in addition to other factors, such as: "the popular culture of their generation, the guidance they receive on course selection in high school and the extent to which their parents, teachers, and counsellors recognize engineering as an appropriate and legitimate career choice for women."[42] The workshop report compares enrolment, teaching, and professional statistics from the goals identified in 1997 compared to the actual data from 2009, outlining areas of improvement (see table, right).

United Kingdom

According to WES Statistics document, 11% of the engineers are female in 2017. 12.37% of the engineers in the UK are female in 2018. There are 25.4% of female from 16 to 18 years old intending to have a career in the engineering field, whereas 51.9% of male from the same age group plan to have a career in engineering. [43]

In 2017, the average salary for female engineers is £38,109, whereas the average salary for male engineers is £48,866. The industry average salary is £48,000.[44]

Professional organizations promoting women in engineering

Organization Country
African Women in Science and Engineering (AWSE) Kenya, Tanzania, Uganda
Anita Borg Institute for Women and Technology Global
Association of Francophone Women in STEM (AFFESTIM) Canada
Association of Korean Women Scientists and Engineers Republic of Korea
Association of Professional Women Engineers of Nigeria (APWEN) Nigeria
Association of South African Women in Science and Engineering South Africa
Associazione Italiana Donne Ingegneri e Architetti (AIDIA) Italy
BC Women in Technology (BCWiT) Canada
Canadian Coalition of Women in Engineering, Science, Trades and Technology (CCWESTT) Canada
Codette Romania
Equate Scotland Scotland
Femmes Ingenieurs France
German Association of Women Engineers (dib) Germany
Global Women Inventors and Innovators Network Global
Grace Hopper Celebration of Women in Computing United States
Institute of Electrical and Electronics Engineers (IEEE) Women in Engineering Global
International Network of Women Engineers and Scientists Global
Japan Network of Women Engineers and Scientists – JNWES Japan
Ontario Network of Women in Engineering Canada
Robogals Australia, United Kingdom, United States, South Africa, Canada, Japan, Philippines
Society for Canadian Women in Science & Technology (SCWIST) Canada
Society of Women Engineers United States
Stemettes United Kingdom
The Society of Taiwan Women in Science and Technology – TWiST Taiwan
Vietnam Association for Intellectual Women Vietnam
WISE United Kingdom
WISE-India India
WITEC EU (European Association for Women in Science Engineering & Technology) Europe
WomEng Global
Women in Aviation United States
Women in Building Services Engineering United Kingdom
Women in Construction Network Northern Ireland Northern Ireland
Women In Engineering ProActive Network United States
Women in Engineering and Geoscience Division Canada
Women in Science & Engineering (WiSE) United States
Women in Science, Technology, Engineering and Mathematics (WSTEM) Mongolia Mongolia
Women in SET United Kingdom
Women into Construction United Kingdom
Women in Technology and Science Ireland (WITS) Ireland
Women in Technology International Global
Women's Engineering Society United Kingdom
Women of STEM United States
Women Who Code United States
World Federation of Engineering Organisations Committee for Women in Engineering Global

See also


  1. MentorNet (2003). The Underrepresentation of Women in Engineering and Related Sciences: Pursuing Two Complementary Paths to Parity. National Academies Press (US).
  2. Society of Women Engineers Blog. "History of Women Engineers". All Together Society Of Women Engineers. Society of Women Engineers. Retrieved 10 November 2017.
  3. Bix, Amy Sue, "'Engineeresses' Invade Campus: Four decades of debate over technical coeducation." IEEE Technology and Society Magazine, Vol. 19 Nr. 1 (Spring 2000), 21.
  4. Bix, Amy Sue (2013). Girls coming to tech! : a history of American engineering education for women. Cambridge, Mass.: MIT Press. pp. 14–43. ISBN 9780262019545.
  5. Yang, Juemei (2016). The impact of power status on gender stereotypes, sexism, and gender discrimination toward women in the workplace and the career identity development of women. The University of North Dakota: The University of North Dakota. pp. 1–20.
  6. Abbate, Janet. "Recoding Gender: Women's Changing Participation in Computing". MIT Press.
  7. Thompson, Clive (2019-02-13). "The Secret History of Women in Coding". New York Times. Retrieved 2019-02-13.
  8. Jones, Brett D.; Ruff, Chloe; Paretti, Marie C. (2013). "The impact of engineering identification and stereotypes on undergraduate women's achievement and persistence in engineering". Social Psychology of Education an International Journal.
  9. Hill, Catherine; Corbett, Christine; St. Rose, Andresse (2010). "Why So Few?: Women in Science, Technology, Engineering and Mathematics" (PDF). AAUW. Cite journal requires |journal= (help)
  10. "Why So Few? Women in Science, Technology, Engineering, and Mathematics". AAUW: Empowering Women Since 1881. Retrieved 2019-10-03.
  11. Buse, Kathleen; Bilimoria, Diana; Perelli, Sheri (2013). "Why they stay: women persisting in US engineering careers". Career Development International. 18 (2): 139–154. doi:10.1108/CDI-11-2012-0108.
  12. Blaisdell, Stephanie (1994). "Factors In The Underrepresentation Of Women In Science and Engineering: A Review Of The Literature". Penn State University: 167–168. Retrieved 17 November 2017.
  13. Adams, Rebecca (2014-08-12). "40 Percent Of Female Engineers Are Leaving The Field. This Might Be Why". Huffington Post. Retrieved 2018-05-04.
  14. Fox, Mary; Sonnert, Gerhard; Nikiforova, Irina (2011). "Programs for Undergraduate Women in Science and Engineering: Issues, Problems, and Solutions". Gender & Society. 25 (5): 591. doi:10.1177/0891243211416809.
  15. Yoder, Brian L. (2015). "Engineering by the Numbers" (PDF). American Society for Engineering Education. Cite journal requires |journal= (help)
  16. Franzway, Suzanne; Sharp, Rhonda; Mills, Julie E; Gill, Judith (2009). "Engineering Ignorance: The Problem of Gender Equity in Engineering". Frontiers: A Journal of Women Studies. 30 (1): 90. doi:10.1353/fro.0.0039.
  17. Silbey, Susan S. "Why Do So Many Women Who Study Engineering Leave the Field?". Harvard Business Review. Retrieved 17 November 2017.
  18. Hill, Ph.D., Catherine; Corbett, Christiane; St. Rose, Ed.D., Andresse. "Why So Few?: Women In Science, Technology, Engineering and Mathematics". ERIC Institute of Education Sciences. AAUW.
  19. Evetts, Julia (1993). "Women and management in engineering: The 'glass ceiling' for". Women in Management Review. 8 (7).
  20. Zenger, Jack; Folkman, Joseph (2019-06-25). "Research: Women Score Higher Than Men in Most Leadership Skills". Harvard Business Review. ISSN 0017-8012. Retrieved 2019-11-01.
  21. Dutta, Debalina1. "Sustaining The Pipeline: Experiences Of International Female Engineers In U.S. Graduate Programs." Journal of Engineering Education 104.3 (2015): 326-344. Education Source.
  22. Blaisdell, Stephanie (1994). "Factors In The Underrepresentation Of Women In Science And Engineering: A Review Of The Literature". Penn State University: 169–170.
  23. Committee on the Guide to Recruiting and Advancing Women Scientists and Engineers in Academia, Committee on Women in Science and Engineering, and National Research Council (2006). To Recruit and Advance : Women Students and Faculty in U.S. Science and Engineering. National Academic Press. p. 26.CS1 maint: multiple names: authors list (link)
  24. "Women in Science, Technology, Engineering, and Mathematics (STEM): Quick Take". Catalyst. Retrieved 2019-11-22.
  25. "Higher Education Student Statistics: UK, 2016/17 - Subjects studied | HESA". www.hesa.ac.uk. Retrieved 2019-11-22.
  26. "Canada Undergraduate Enrollment". Research and Trends for Women in STEM. 2016-08-18. Retrieved 2019-11-22.
  27. Bendemra, Hamza. "Caught short: a snapshot of Australian engineering". The Conversation. Retrieved 2019-11-22.
  28. "SWE Research Update: Women in Engineering By the Numbers". All Together. 2018-09-11. Retrieved 2019-10-14.
  29. Yoder, Brian. "Engineering by the Numbers" (PDF). ASEE. American Society for Engineering Education.
  30. "Table 2. Doctorates awarded to women, by field of study: 1995–2004" (PDF). National Science Foundation. Retrieved 10 Apr 2012.
  31. Scott Jaschik, Women Lead in Doctorates, Inside Higher Ed, September 14, 2010 (accessed June 18, 2013)
  32. Committee on the Guide to Recruiting and Advancing Women Scientists and Engineers in Academia; Committee on Women in Science and Engineering; National Research Council. To Recruit and Advance : Women Students and Faculty in U.S. Science and Engineering. pp. 14–47.
  33. "SWE Research Update: Women in Engineering By the Numbers". All Together. 2018-09-11. Retrieved 2019-10-14.
  34. Kaspura, Andre (2014). "THE ENGINEERING PROFESSION: A STATISTICAL OVERVIEW". 11. Engineers Australia: 117. Cite journal requires |journal= (help)
  35. Myers, Jennifer (9 Nov 2010). "Why more women aren't becoming engineers". Retrieved 24 Mar 2013.
  36. "Canadian Engineers for Tomorrow | Engineers Canada". engineerscanada.ca. Retrieved 2019-06-23.
  37. "Women in Engineering". Engineers Canada. Retrieved 30 Jun 2012.
  38. "Canadian Engineers for Tomorrow: Trends in Engineering Enrolment and Degrees Awarded 2013 to 2017". Engineers Canada. Retrieved 23 Jun 2019.
  39. "Canadian Engineers for Tomorrow | Engineers Canada". engineerscanada.ca. Retrieved 2019-06-23.
  40. "Canadian Engineers for Tomorrow | Engineers Canada". engineerscanada.ca. Retrieved 2019-06-23.
  41. "INWES Education and Research Institute: CCWE+20 National Workshop Project Final Report" (PDF). INWES Education and Research Institute. Jul 2011. Retrieved 24 Mar 2013.
  42. "Canada needs more women engineers—how do we get there?". University of Ottawa. 26 Jul 2011. Retrieved 24 May 2013.
  43. "Useful Statistics | Women's Engineering Society". www.wes.org.uk. Retrieved 2019-10-21.
  44. Excell, Jon (2017-06-20). "How big is the gender pay gap in UK engineering?". The Engineer. Retrieved 2019-10-21.

Further reading

  • Bix, Amy Sue. Girls Coming to Tech!: A History of American Engineering Education for Women (MIT Press, 2014)
  • Rosser, Sue (2014). Breaking into the Lab: Engineering Progress for Women in Science. NYU Press. ISBN 978-1479809202.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.