# Truncated icosidodecahedron

In geometry, the truncated icosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

Truncated icosidodecahedron

TypeArchimedean solid
Uniform polyhedron
ElementsF = 62, E = 180, V = 120 (χ = 2)
Faces by sides30{4}+20{6}+12{10}
Schläfli symbolstr{5,3} or $t{\begin{Bmatrix}5\\3\end{Bmatrix}}$ t0,1,2{5,3}
Wythoff symbol2 3 5 |
Coxeter diagram
Symmetry groupIh, H3, [5,3], (*532), order 120
Rotation groupI, [5,3]+, (532), order 60
Dihedral angle6-10: 142.62°
4-10: 148.28°
4-6: 159.095°
ReferencesU28, C31, W16
PropertiesSemiregular convex zonohedron

Colored faces

4.6.10
(Vertex figure)

Disdyakis triacontahedron
(dual polyhedron)

Net

It has 62 faces: 30 squares, 20 regular hexagons, and 12 regular decagons. It has more vertices (120) and edges (180) than any other convex nonprismatic uniform polyhedron, and has by far the greatest volume (206.8 cubic units) when its edge length equals 1. Of all Platonic and Archimedean solids, it occupies the largest percentage (89.80%) of the volume of a sphere in which it is inscribed, very narrowly beating the snub dodecahedron (89.63%) and Small Rhombicosidodecahedron (89.23%), and less narrowly beating the Truncated Icosahedron (86.74%). Since each of its faces has point symmetry (equivalently, 180° rotational symmetry), the truncated icosidodecahedron is a zonohedron.

## Names

 The name truncated icosidodecahedron, given originally by Johannes Kepler, is misleading. An actual truncation of an icosidodecahedron has rectangles instead of squares. This nonuniform polyhedron is topologically equivalent to the Archimedean solid. Alternate interchangeable names are: Truncated icosidodecahedron (Johannes Kepler) Rhombitruncated icosidodecahedron (Magnus Wenninger) Great rhombicosidodecahedron (Robert Williams, Peter Cromwell) Omnitruncated dodecahedron or icosahedron (Norman Johnson) .mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{text-align:left;background-color:transparent}.mw-parser-output .tmulti .thumbcaption-center{text-align:center;background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .thumbcaption{text-align:center}}Icosidodecahedron and its truncation

The name great rhombicosidodecahedron refers to the relationship with the (small) rhombicosidodecahedron (compare section Dissection).
There is a nonconvex uniform polyhedron with a similar name, the nonconvex great rhombicosidodecahedron.

## Area and volume

The surface area A and the volume V of the truncated icosidodecahedron of edge length a are:

{\begin{aligned}A&=30\left(1+{\sqrt {3}}+{\sqrt {5+2{\sqrt {5}}}}\right)a^{2}&&\approx 174.292\,0303a^{2}.\\V&=\left(95+50{\sqrt {5}}\right)a^{3}&&\approx 206.803\,399a^{3}.\end{aligned}} If a set of all 13 Archimedean solids were constructed with all edge lengths equal, the truncated icosidodecahedron would be the largest.

## Cartesian coordinates

Cartesian coordinates for the vertices of a truncated icosidodecahedron with edge length 2φ  2, centered at the origin, are all the even permutations of:

1/φ, ±1/φ, ±(3 + φ)),
2/φ, ±φ, ±(1 + 2φ)),
1/φ, ±φ2, ±(−1 + 3φ)),
(±(2φ  1), ±2, ±(2 + φ)) and
φ, ±3, ±2φ),

where φ = 1 + 5/2 is the golden ratio.

## Dissection

The truncated icosidodecahedron is the convex hull of a rhombicosidodecahedron with cuboids above its 30 squares whose height to base ratio is the golden ratio. The rest of its space can be dissected into 12 nonuniform pentagonal cupolas below the decagons and 20 nonuniform triangular cupolas below the hexagons.

## Orthogonal projections

The truncated icosidodecahedron has seven special orthogonal projections, centered on a vertex, on three types of edges, and three types of faces: square, hexagonal and decagonal. The last two correspond to the A2 and H2 Coxeter planes.

Orthogonal projections
Centered by Vertex Edge
4-6
Edge
4-10
Edge
6-10
Face
square
Face
hexagon
Face
decagon
Solid
Wireframe
Projective
symmetry
+      
Dual
image

## Spherical tilings and Schlegel diagrams

The truncated icosidodecahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

Schlegel diagrams are similar, with a perspective projection and straight edges.

Orthographic projection Stereographic projections
Decagon-centered Hexagon-centered Square-centered

## Geometric variations

Within Icosahedral symmetry there are unlimited geometric variations of the truncated icosidodecahedron with isogonal faces. The truncated dodecahedron, rhombicosidodecahedron, and truncated icosahedron as degenerate limiting cases.

## Truncated icosidodecahedral graph

Truncated icosidodecahedral graph
5-fold symmetry
Vertices120
Edges180
Diameter15
Girth4
Automorphisms120 (A5×2)
Chromatic number2
PropertiesCubic, Hamiltonian, regular, zero-symmetric
Table of graphs and parameters

In the mathematical field of graph theory, a truncated icosidodecahedral graph (or great rhombicosidodecahedral graph) is the graph of vertices and edges of the truncated icosidodecahedron, one of the Archimedean solids. It has 120 vertices and 180 edges, and is a zero-symmetric and cubic Archimedean graph.

 3-fold symmetry 2-fold symmetry
 Bowtie icosahedron and dodecahedron contain two trapezoidal faces in place of the square.

This polyhedron can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram . For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.