Styrene, also known as ethenylbenzene, vinylbenzene, and phenylethene, is an organic compound with the chemical formula C6H5CH=CH2. This derivative of benzene is a colorless oily liquid that evaporates easily and has a sweet smell, although high concentrations have a less pleasant odor. Styrene is the precursor to polystyrene and several copolymers. Approximately 25 million tonnes of styrene were produced in 2010.[5]

Preferred IUPAC name
Other names
Diarex HF 77
3D model (JSmol)
ECHA InfoCard 100.002.592
RTECS number
  • WL3675000
Molar mass 104.15 g/mol
Appearance colorless oily liquid
Odor sweet, floral[2]
Density 0.909 g/cm3
Melting point −30 °C (−22 °F; 243 K)
Boiling point 145 °C (293 °F; 418 K)
0.03% (20°C)[2]
log P 2.70 [3]
Vapor pressure 5 mmHg (20°C)[2]
−6.82×10−5 cm3/mol
Viscosity 0.762 cP at 20 °C
0.13 D
Main hazards flammable, toxic
Safety data sheet MSDS
R-phrases (outdated) R10 R36
S-phrases (outdated) S38 S20 S23
NFPA 704 (fire diamond)
Flash point 31 °C (88 °F; 304 K)
Explosive limits 0.9%-6.8%[2]
Lethal dose or concentration (LD, LC):
2194 ppm (mouse, 4 hr)
5543 ppm (rat, 4 hr)[4]
10,000 ppm (human, 30 min)
2771 ppm (rat, 4 hr)[4]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 100 ppm C 200 ppm 600 ppm (5-minute maximum peak in any 3 hours)[2]
REL (Recommended)
TWA 50 ppm (215 mg/m3) ST 100 ppm (425 mg/m3)[2]
IDLH (Immediate danger)
700 ppm[2]
Related compounds
Related styrenes;
related aromatic compounds
Polystyrene, Stilbene;
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Occurrence, history, and use

Natural occurrence

Styrene is named after storax balsam, the resin of Liquidambar trees of the Altingiaceae plant family. Styrene occurs naturally in small quantities in some plants and foods (cinnamon, coffee beans, and peanuts)[6] and is also found in coal tar.


In 1839, the German apothecary Eduard Simon isolated a volatile liquid from the resin (called storax or styrax (Latin)) of the American sweetgum tree (Liquidambar styraciflua). He called the liquid "styrol" (now styrene).[7][8] He also noticed that when styrol was exposed to air, light, or heat, it gradually transformed into a hard, rubber-like substance, which he called "styrol oxide".[9] By 1845, the German chemist August Hofmann and his student John Blyth (1814–1871) had determined styrene's empirical formula: C8H8.[10] They had also determined that Simon's "styrol oxide" — which they renamed "metastyrol" — had the same empirical formula as styrene.[11] Furthermore, they could obtain styrene by dry-distilling "metastyrol".[12] In 1865, the German chemist Emil Erlenmeyer found that styrene could form a dimer,[13] and in 1866 the French chemist Marcelin Berthelot stated that "metastyrol" was a polymer of styrene (i.e. polystyrene).[14] Meanwhile, other chemists had been investigating another component of storax, namely, cinnamic acid. They had found that cinnamic acid could be decarboxylated to form "cinnamene" (or "cinnamol"), which appeared to be styrene. In 1845, French chemist Emil Kopp suggested that the two compounds were identical,[15] and in 1866, Erlenmeyer suggested that both "cinnamol" and styrene might be vinylbenzene.[16] However, the styrene that was obtained from cinnamic acid seemed different from the styrene that was obtained by distilling storax resin: the latter was optically active.[17] Eventually, in 1876, the Dutch chemist van 't Hoff resolved the ambiguity: the optical activity of the styrene that was obtained by distilling storax resin was due to a contaminant.[18]

Industrial production from ethylbenzene

Styrene plays an important role in chemical production to make latex, synthetic rubber, and other polystyrene resins. A common way to produce styrene is through the dehydrogenation of ethylbenzene. Benzene and ethylene are first compressed and sent to a reactor to produce ethylbenzene in the presence of a Friedel–Crafts catalyst (aluminum chloride) at approximately 95 °C. The reaction occurs as

C6H6 + CH2CH2 → C6H5CH2CH3

The product mixture is then fed into a distillation column to be separated into ethylbenzene, benzene, and polyethylbenzenes. After the partial distillation, the ethylbenzene is fed out with a high purity of over 99% at 136 °C (its boiling point). A benzene recycle stream (to the original entering benzene stream) and a mixture stream of polyethylbenzenes exit the reactor separately. The effluent mixture of polyethylbenzenes is heated via a heat exchanger and sent to a reactor at 200 °C to be dealkylated into benzene. The products, along with unreacted benzene, are then cooled via another heat exchanger and sent into the aforementioned benzene recycle stream. The fed-out ethylbenzene vapor stream is mixed with superheated steam and the resulting mixture is heated, then dehydrogenated to styrene mixture via an adiabatic reactor using an iron(III) oxide catalyst. The reactor is run with added steam, with a typical yield of 88–94%, and the reaction occurs as

C6H5CH2CH3 → C6H5CHCH2 + H2

The exit stream is condensed and sent to a distillation column, which separates a crude styrene stream from the vent gas (hydrogen and other vapors), which exits from the top, and the liquid condensate, which exits from the column’s bottom. Via this process, the selectivity of styrene from ethylbenzene is approximately 90%. The crude styrene stream is purified via a polymerization inhibitor in a reactor.

Other industrial routes

From ethylbenzene hydroperoxide

Styrene is also co-produced commercially in a process known as POSM (Lyondell Chemical Company) or SM/PO (Shell) for styrene monomer / propylene oxide. In this process ethylbenzene is treated with oxygen to form the ethylbenzene hydroperoxide. This hydroperoxide is then used to oxidize propylene to propylene oxide. The resulting 1-phenylethanol is dehydrated to give styrene:

From toluene and methanol

Styrene can be produced from toluene and methanol, which are cheaper raw materials than those in the conventional process. This process has suffered from low selectivity associated with the competing decomposition of methanol.[19] Exelus Inc. claims to have developed this process with commercially viable selectivities, at 400–425 °C and atmospheric pressure, by forcing these components through a proprietary zeolitic catalyst. It is reported[20] that an approximately 9:1 mixture of styrene and ethylbenzene is obtained, with a total styrene yield of over 60%.[21]

From benzene and ethane

Another route to styrene involves the reaction of benzene and ethane. This process is being developed by Snamprogetti and Dow. Ethane, along with ethylbenzene, is fed to a dehydrogenation reactor with a catalyst capable of simultaneously producing styrene and ethylene. The dehydrogenation effluent is cooled and separated and the ethylene stream is recycled to the alkylation unit. The process attempts to overcome previous shortcomings in earlier attempts to develop production of styrene from ethane and benzene, such as inefficient recovery of aromatics, production of high levels of heavies and tars, and inefficient separation of hydrogen and ethane. Development of the process is ongoing.[22]

Laboratory synthesis

A laboratory synthesis of styrene entails the decarboxylation of cinnamic acid:[23]


Styrene was first prepared by this method.[24]


The presence of the vinyl group allows styrene to polymerize. Commercially significant products include polystyrene, ABS, styrene-butadiene (SBR) rubber, styrene-butadiene latex, SIS (styrene-isoprene-styrene), S-EB-S (styrene-ethylene/butylene-styrene), styrene-divinylbenzene (S-DVB), styrene-acrylonitrile resin (SAN), and unsaturated polyesters used in resins and thermosetting compounds. These materials are used in rubber, plastic, insulation, fiberglass, pipes, automobile and boat parts, food containers, and carpet backing.

Health effects

Styrene is regarded as a "known carcinogen", especially in case of eye contact, but also in case of skin contact, of ingestion and of inhalation, according to several sources.[25][26][27][28] Styrene is largely metabolized into styrene oxide in humans, resulting from oxidation by cytochrome P450. Styrene oxide is considered toxic, mutagenic, and possibly carcinogenic. Styrene oxide is subsequently hydrolyzed in vivo to styrene glycol by the enzyme epoxide hydrolase.[29] The U.S. Environmental Protection Agency (EPA) has described styrene to be "a suspected toxin to the gastrointestinal tract, kidney, and respiratory system, among others".[30][31] On 10 June 2011, the U.S. National Toxicology Program has described styrene as "reasonably anticipated to be a human carcinogen".[32][33] However, a STATS author describes[34] a review that was done on scientific literature and concluded that "The available epidemiologic evidence does not support a causal relationship between styrene exposure and any type of human cancer".[35] Despite this claim, work has been done by Danish researchers to investigate the relationship between occupational exposure to styrene and cancer. They concluded, "The findings have to be interpreted with caution, due to the company based exposure assessment, but the possible association between exposures in the reinforced plastics industry, mainly styrene, and degenerative disorders of the nervous system and pancreatic cancer, deserves attention".[36] In 2012 the Danish EPA concluded that the styrene data do not support a cancer concern for styrene.[37] The U.S. EPA does not have a cancer classification for styrene,[38] but it has been the subject of their Integrated Risk Information System (IRIS) program.[39] The U.S. National Toxicology Program of the U.S. Department of Health and Human Services has determined that styrene is "reasonably anticipated to be a human carcinogen".[40] Various regulatory bodies refer to styrene, in various contexts, as a possible or potential human carcinogen. The International Agency for Research on Cancer considers styrene to be "possibly carcinogenic to humans".[41]

The neurotoxic[42] properties of styrene have also been studied and reported effects include effects on vision[43][44] and on hearing functions.[45][46][47][48] Studies with experimental animals,[46][47] as well as epidemiologic studies have observed a synergistic interaction with noise in causing hearing difficulties.[49][50][51]


  1. "Front Matter". Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: Royal Society of Chemistry. 2014. pp. P001–P004. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
  2. NIOSH Pocket Guide to Chemical Hazards. "#0571". National Institute for Occupational Safety and Health (NIOSH).
  3. "Styrene_msds".
  4. "Styrene". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. "New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions" (PDF). U.S. Department of Energy. Archived from the original (PDF) on 21 April 2013.
  6. Steele, D. H.; M. J., Thornburg; J. S., Stanley; R. R., Miller; R., Brooke; J. R., Cushman; G., Cruzan (1994). "Determination of styrene in selected foods". Journal of Agricultural and Food Chemistry. 42 (8): 1661–1665. doi:10.1021/jf00044a015. ISSN 0021-8561. Archived from the original on 14 February 2018.
  7. Simon, E. (1839) "Ueber den flüssigen Storax (Styrax liquidus)" (On liquid storax (Styrax liquidus), Annalen der Chemie, 31 : 265–277. From p. 268: "Das flüchtige Oel, für welches ich den Namen Styrol vorschlage, … " (The volatile oil, for which I suggest the name "styrol", … )
  8. For further details of the history of styrene, see: F. W. Semmler, Die ätherischen Öle nach ihren chemischen Bestandteilen unter Berücksichtigung der geschichtlichen Entwicklung [The volatile liquids according to their chemical components with regard to historical development], vol. 4 (Leipzig, Germany, Veit & Co., 1907), § 327. Styrol, pp. 24-28. Archived 1 May 2018 at the Wayback Machine
  9. (Simon, 1839), p. 268. From p. 268: "Für den festen Rückstand würde der Name Styroloxyd passen." (For the solid residue, the name "styrol oxide" would fit.)
  10. See:
  11. (Blyth and Hofmann, 1845a), p. 348. From p. 348: "Analysis as well as synthesis has equally proved that styrol and the vitreous mass (for which we propose the name of metastyrol) possess the same constitution per cent."
  12. (Blyth and Hofmann, 1845a), p. 350.
  13. Erlenmeyer, Emil (1865) "Ueber Distyrol, ein neues Polymere des Styrols" (On distyrol, a new polymer of styrol), Annalen der Chemie, 135 : 122–123.
  14. Berthelot, M. (1866) "Sur les caractères de la benzine et du styrolène, comparés avec ceux des autres carbures d'hydrogène" (On the characters of benzene and styrene, compared with those of other hydrocarbons), Bulletin de la Société Chimique de Paris, 2nd series, 6 : 289–298. From p. 294: "On sait que le styrolène chauffé en vase scellé à 200°, pendant quelques heures, se change en un polymère résineux (métastyrol), et que ce polymère, distillé brusquement, reproduit le styrolène." (One knows that styrene [when] heated in a sealed vessel at 200°C, for several hours, is changed into a resinous polymer (metastyrol), and that this polymer, [when] distilled abruptly, reproduces styrene.)
  15. Kopp, E. (1845), "Recherches sur l'acide cinnamique et sur le cinnamène" Archived 8 November 2016 at the Wayback Machine (Investigations of cinnamic acid and cinnamen), Comptes rendus, 21 : 1376–1380. From p. 1380: "Je pense qu'il faudra désormais remplacer le mot de styrol par celui de cinnamène, et le métastyrol par le métacinnamène." (I think that henceforth one will have to replace the word "styrol" with that of "cinnamène", and "metastyrol" with "metacinnamène".)
  16. Erlenmeyer, Emil (1866) "Studien über die s.g. aromatischen Säuren" (Studies of the so-called aromatic acids), Annalen der Chemie, 137 : 327–359; see p. 353.
  17. Berthelot, Marcellin (1867). "Sur les états isomériques du styrolène" [On the isomeric states of styrene]. Annales de Chimie et de Physique. 4th series (in French). 12: 159–161. From p. 160: "1° Le carbure des cinnamates est privé de pouvoir rotatoire, tandis que le carbure du styrax dévie de 3 degrés la teinte de passage (l = 100 mm)." (1. The carbon [atom] of cinnamates is bereft of rotary power [i.e., the ability to rotate polarized light], whereas the carbon of styrax deflects by 3 degrees the neutral tint [i.e., the relative orientation of the polarized quartz plates at which the light through the polarimeter appears colorless] (length = 100 mm). [For further details about 19th century polarimeters, see: Spottiswode, William (1883). Polarisation of Light (4th ed.). London, England: Macmillan and Co. pp. 51–52. Archived from the original on 10 September 2010. Retrieved 15 September 2016.])
  18. van 't Hoff, J. H. (1876) "Die Identität von Styrol und Cinnamol, ein neuer Körper aus Styrax" (The identity of styrol and cinnamol, a new substance from styrax), Berichte der deutschen chemischen Gesellschaft, 9 : 5-6.
  19. Yashima, Tatsuaki; Sato, Keiichi; Hayasaka, Tomoki; Hara, Nobuyoshi (1972). "Alkylation on synthetic zeolites: III. Alkylation of toluene with methanol and formaldehyde on alkali cation exchanged zeolites". Journal of Catalysis. 26 (3): 303–312. doi:10.1016/0021-9517(72)90088-7.
  20. "Welcome to ICIS". Retrieved 1 May 2018.
  21. Stephen K. Ritter, Chemical & Engineering News, 19 March 2007, p.46.
  22. "CHEMSYSTEMS.COM" (PDF). Archived from the original (PDF) on 8 July 2011. Retrieved 1 May 2018.
  23. Abbott, T. W.; Johnson, J. R. (1941). "Phenylethylene (Styrene)". Organic Syntheses.CS1 maint: multiple names: authors list (link); Collective Volume, 1, p. 440
  24. R. Fittig und F. Binder "Ueber die Additionsproducte der Zimmtssaure" in "Untersuchungen über die ungesättigten Säuren. I. Weitere Beiträge zur Kenntniß der Fumarsäure und Maleïnsäure" Rudolph Fittig, Camille Petri, Justus Liebigs Annalen der Chemie 1879, volume 195, p 56-179. doi:10.1002/jlac.18791950103
  25. Denis H. James; William M. Castor (2007), "Styrene", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, p. 1, doi:10.1002/14356007.a25_329.pub2, ISBN 978-3527306732
  26. MSDS (1 November 2010). "Material Safety Data Sheet Styrene (monomer) MSDS". MSDS. Archived from the original on 7 August 2011. Retrieved 11 June 2011.
  27. US EPA (December 1994). "OPPT Chemical Fact Sheets (Styrene) Fact Sheet: Support Document (CAS No. 100-42-5)" (PDF). US EPA. Archived (PDF) from the original on 24 December 2010. Retrieved 11 June 2011.
  28. "Archived copy" (PDF). Archived (PDF) from the original on 2 June 2008. Retrieved 6 April 2008.CS1 maint: archived copy as title (link)
  29. Kenneth C. Liebman (1975). "Metabolism and toxicity of styrene" (PDF). Environmental Health Perspectives. 11: 115–119. doi:10.2307/3428333. JSTOR 3428333.
  30. "EPA settles case against Phoenix company for toxic chemical reporting violations". U.S. Environmental Protection Agency. Archived from the original on 25 September 2008. Retrieved 11 February 2008.
  31. "EPA Fines California Hot Tub Manufacturer for Toxic Chemical Release Reporting Violations". U.S. Environmental Protection Agency. Archived from the original on 25 September 2008. Retrieved 11 February 2008.
  32. Harris, Gardiner (10 June 2011). "Government Says 2 Common Materials Pose Risk of Cancer". New York Times. Archived from the original on 13 June 2011. Retrieved 11 June 2011.
  33. National Toxicology Program (10 June 2011). "12th Report on Carcinogens". National Toxicology Program. Archived from the original on 12 June 2011. Retrieved 11 June 2011.
  34. "Archived copy". Archived from the original on 9 June 2012. Retrieved 24 September 2012.CS1 maint: archived copy as title (link)
  35. Boffetta, P., et al., Epidemiologic Studies of Styrene and Cancer: A Review of the Literature Archived 9 October 2012 at the Wayback Machine, J. Occupational and Environmental Medicine, Nov.2009, V.51, N.11.
  36. Kolstad, HA; Juel K; Olsen J; Lynge E. (May 1995). "Exposure to styrene and chronic health effects: mortality and incidence of solid cancers in the Danish reinforced plastics industry". Occupational and Environmental Medicine. 52 (5): 320–7. doi:10.1136/oem.52.5.320. PMC 1128224. PMID 7795754.
  37. Danish EPA 2011 review "Archived copy" (PDF). Archived (PDF) from the original on 14 July 2014. Retrieved 15 February 2012.CS1 maint: archived copy as title (link)
  38. "Archived copy". Archived from the original on 12 May 2009. Retrieved 18 October 2009.CS1 maint: archived copy as title (link) US environmental protection agency. Section I.B.4 relates to neurotoxicology.
  39. "EPA IRIS track styrene page". Archived from the original on 22 December 2011. Retrieved 1 May 2018.
  40. "Styrene entry in National Toxicology Program's Thirteenth Report on Carcinogens" (PDF). Archived from the original (PDF) on 22 October 2017. Retrieved 1 May 2018.
  41. "Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene, and Styrene - WHO - OMS -". Archived from the original on 6 May 2009. Retrieved 1 May 2018.
  42. Cherry, N.; Gautrin, D. (January 1990). "Neurotoxic effects of styrene: further evidence". British Journal of Industrial Medicine. 47 (1): 29–37. doi:10.1136/oem.47.1.29. ISSN 0007-1072. PMC 1035091. PMID 2155647.
  43. Murata, K.; Araki, S.; Yokoyama, K. (1991). "Assessment of the peripheral, central, and autonomic nervous system function in styrene workers". American Journal of Industrial Medicine. 20 (6): 775–784. doi:10.1002/ajim.4700200609. ISSN 0271-3586. PMID 1666820.
  44. Seeber, Andreas; Bruckner, Thomas; Triebig, Gerhard (29 March 2009). "Occupational styrene exposure, colour vision and contrast sensitivity: a cohort study with repeated measurements". International Archives of Occupational and Environmental Health. 82 (6): 757–770. doi:10.1007/s00420-009-0416-7. ISSN 0340-0131. PMID 19330514.
  45. Campo, Pierre; Venet, Thomas; Rumeau, Cécile; Thomas, Aurélie; Rieger, Benoît; Cour, Chantal; Cosnier, Frédéric; Parietti-Winkler, Cécile (October 2011). "Impact of noise or styrene exposure on the kinetics of presbycusis". Hearing Research. 280 (1–2): 122–132. doi:10.1016/j.heares.2011.04.016. ISSN 1878-5891. PMID 21616132.
  46. Lataye, R.; Campo, P.; Loquet, G.; Morel, G. (April 2005). "Combined effects of noise and styrene on hearing: comparison between active and sedentary rats". Noise & Health. 7 (27): 49–64. doi:10.4103/1463-1741.31633. ISSN 1463-1741. PMID 16105249.
  47. Campo, Pierre; Venet, Thomas; Thomas, Aurélie; Cour, Chantal; Brochard, Céline; Cosnier, Frédéric (July 2014). "Neuropharmacological and cochleotoxic effects of styrene. Consequences on noise exposures". Neurotoxicology and Teratology. 44: 113–120. doi:10.1016/ ISSN 1872-9738. PMID 24929234.
  48. Ann-Christin., Johnson (2010) [2009]. Occupational exposure to chemicals and hearing impairment. Morata, Thais C., Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals., Sahlgrenska akademin (Göteborgs universitet), Göteborgs universitet., Arbetsmiljöverket. Gotenburg: University of Gothenburg. ISBN 9789185971213. OCLC 792746283.
  49. Sliwińska-Kowalska, Mariola; Zamyslowska-Szmytke, Ewa; Szymczak, Wieslaw; Kotylo, Piotr; Fiszer, Marta; Wesolowski, Wiktor; Pawlaczyk-Luszczynska, Malgorzata (January 2003). "Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise". Journal of Occupational and Environmental Medicine. 45 (1): 15–24. doi:10.1097/00043764-200301000-00008. ISSN 1076-2752. PMID 12553175.
  50. Morata, Thais C.; Sliwinska-Kowalska, Mariola; Johnson, Ann-Christin; Starck, Jukka; Pawlas, Krystyna; Zamyslowska-Szmytke, Ewa; Nylen, Per; Toppila, Esko; Krieg, Edward (October 2011). "A multicenter study on the audiometric findings of styrene-exposed workers". International Journal of Audiology. 50 (10): 652–660. doi:10.3109/14992027.2011.588965. ISSN 1708-8186. PMID 21812635.
  51. Sisto, R.; Cerini, L.; Gatto, M. P.; Gherardi, M.; Gordiani, A.; Sanjust, F.; Paci, E.; Tranfo, G.; Moleti, A. (November 2013). "Otoacoustic emission sensitivity to exposure to styrene and noise". The Journal of the Acoustical Society of America. 134 (5): 3739–3748. doi:10.1121/1.4824618. ISSN 1520-8524. PMID 24180784.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.