Sonogashira coupling

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.[1]

The Sonogashira reaction
  • R1: aryl
  • R2: aryl or vinyl
  • X: I, Br, Cl or OTf
Sonogashira coupling
Named after Kenkichi Sonogashira
Reaction type Coupling reaction
Organic Chemistry Portal sonogashira-coupling
RSC ontology ID RXNO:0000137
Examples and Related Reactions
Similar reactions Copper-free Sonogashira coupling

The Sonogashira cross-coupling reaction has been employed in a wide variety of areas, due to its usefulness in the formation of carbon–carbon bonds. The reaction can be carried out under mild conditions, such as at room temperature, in aqueous media, and with a mild base, which has allowed for the use of the Sonogashira cross-coupling reaction in the synthesis of complex molecules. Its applications include pharmaceuticals, natural products, organic materials, and nanomaterials.[1] Specific examples include its use in the synthesis of tazarotene,[2] which is a treatment for psoriasis and acne, and in the preparation of SIB-1508Y, also known as Altinicline,[3] a nicotinic receptor agonist.


The alkynylation reaction of aryl halides using aromatic acetylenes was reported in 1975 in three independent contributions by Cassar[4], Dieck and Heck[5] as well as Sonogashira, Tohda and Hagihara[6]. All of the reactions employ palladium catalysts to afford the same reaction products. However, the protocols of Cassar and Heck are performed solely by the use of palladium and require harsh reaction conditions (i.e. high reaction temperatures). The use of copper-cocatalyst in addition to palladium complexes in Sonogashira's procedure enabled the reactions to be carried under mild reaction conditions in excellent yields. A rapid development of the Pd/Cu systems followed and enabled myriad synthetic applications, while Cassar-Heck conditions were left, maybe unjustly, all but forgotten.[7] The reaction's remarkable utility can be evidenced by the amount of research still being done on understanding and optimizing its synthetic capabilities as well as employing the procedures to prepare various compounds of synthetic, medicinal or material/industrial importance.[7] Among the cross-coupling reactions it follows in the number of publications right after Suzuki and Heck reaction[8] and a search for the term "Sonogashira" in Scifinder provides over 1500 references for journal publications between 2007 and 2010.[7]

The Sonogashira reaction has become so well known that often all reactions that use modern organometallic catalyst to couple alkyne motifs are termed some variant of "Sonogashira reaction", despite the fact that these reactions are not carried out under true Sonogashira reaction conditions.[7]


The reaction mechanism is not clearly understood, but the textbook mechanism revolves around a palladium cycle which is in agreement with the "classical" cross-coupling mechanism, and a copper cycle, which is less well known.[9]

The palladium cycle

  • Palladium precatalyst species is activated under reaction conditions to form a reactive Pd0 compound, A. The exact identity of the catalytic species depends strongly upon reaction conditions. With simple phosphines, such as PPh3 (n=2), and in case of bulky phosphines (i.e. P(o-Tol)3) it was demonstrated that monoligated species (n=1) are formed.[10] Furthermore, some results point to the formation of anionic palladium species, [L2Pd0Cl] , which could be the real catalysts in the presence of anions and halides.[11]
  • The active Pd0 catalyst is involved in the oxidative addition step with the aryl or vinyl halide substrate to produce PdII species B. Similar to the above discussion, its structure depends on the employed ligands. This step is believed to be the rate-limiting step of the reaction.
  • Complex B reacts with copper acetylide, complex F, in a transmetallation step, yielding complex C and regenerating the copper catalyst.
  • The structure of complex C depends on the properties of the ligands. For the facile reductive elimination to occur, the substrate motifs need to be in close vicinity, i.e. cis-orientation, so there can be trans-cis isomerisation involved. In reductive elimination the product tolane is expelled from the complex and the active Pd catalytic species is regenerated.

The copper cycle

  • The copper cycle is not entirely well described. It is suggested that the presence of a base results in the formation of a π-alkyne complex E. This increases the acidity of the terminal proton and leads to the formation of copper acetylide, complex F, upon deprotonation.
  • Acetylide F is then involved in the transmetallation reaction with palladium intermediate B.

The mechanism of a Copper-free Sonogashira variant

Although beneficial for the effectiveness of the reaction, the use of copper salts in "classical" Sonogashira reaction is accompanied with several drawbacks, such as the application of environmentally unfriendly reagents, the formation of undesirable alkyne homocoupling (Glaser side products), and the necessity of strict oxygen exclusion in the reaction mixture. Thus, with the aim of excluding copper from the reaction, a lot of effort was undertaken in the developments of Cu-free Sonogashira reaction. Along the development of new reaction conditions, many experimental and computational studies focused on elucidation of reaction mechanism.[12] Until recently, the exact mechanism by which the cu-free reaction occurs was under debate, with critical mechanistic questions unanswered.[7] It was proven in 2018 by Košmrlj et al. that the reaction proceeds along the two interconnected Pd0/PdII catalytic cycles.[13]

Mechanism for the Cu-free Sonogashira reaction.[13]
  • Similar to the original mechanism, the Pd0 cycle begins with the oxidative addition of the aryl halide or triflate to the Pd0 catalyst, forming complex B and activating aryl halide substrate for the reaction.
  • Acetylene is activated in the second, PdII mediated cycle. Phenylacetylene was proven to form Pd monoacetylide complex D as well as Pd bisacetylide complex F under mild reaction conditions.
  • Both activated species, namely complexes B and F, are involved in the transmetallation step, forming complex C and regenerating D.
  • The resulting products of reductive elimination, disubstituted alkyne product as well as regenerated Pd0 catalytic species, complete the Pd0 catalytic cycle.

It was demonstrated that amines are competitive to the phosphines and can also participate as ligands L in the described reaction species. Depending on the rate of the competition between amine and phosphines, a dynamic and complex interplay is expected when using different coordinative bases.[14][15][13]

Reaction conditions

The Sonogashira reaction is typically run under mild conditions.[16] The cross-coupling is carried out at room temperature with a base, typically an amine, such as diethylamine,[6] that also acts as the solvent. The reaction medium must be basic to neutralize the hydrogen halide produced as the byproduct of this coupling reaction, so alkylamine compounds such as triethylamine and diethylamine are sometimes used as solvents, but also DMF or ether can be used as solvent. Other bases such as potassium carbonate or cesium carbonate are occasionally used. In addition, deaerated conditions are formally needed for Sonogashira coupling reactions because the palladium(0) complexes are unstable in the air, and oxygen promotes the formation of homocoupled acetylenes. Recently, development of air-stable organopalladium catalysts enable this reaction to be conducted in the ambient atmosphere.


Typically, two catalysts are needed for this reaction: a zerovalent palladium complex and a copper(I) halide salt. Common examples of palladium catalysts include those containing phosphine ligands such as [Pd(PPh3)4]. Another commonly used palladium source is [Pd(PPh3)2Cl2], but complexes containing bidentate phosphine ligands, such as [Pd(dppe)Cl2], [Pd(dppp)Cl2], and [Pd(dppf)Cl2] have also been used.[9] The drawback to such catalysts is the need for high loadings of palladium (up to 5 mol %), along with a larger amount of a copper co-catalyst.[9] PdII complexes are in fact pre-catalysts since they must be reduced to Pd(0) before catalysis can begin. PdII complexes generally exhibit greater stability than Pd0 complexes and can be stored under normal laboratory conditions for months.[17] PdII catalysts are reduced to Pd0 in the reaction mixture by an amine, a phosphine ligand, or another reactant in the mixture allowing the reaction to proceed.[18] For instance, oxidation of triphenylphosphine to triphenylphosphine oxide can lead to the formation of Pd0 in situ when [Pd(PPh3)2Cl2] is used.

Copper(I) salts, such as CuI, react with the terminal alkyne and produce a copper(I) acetylide, which acts as an activated species for the coupling reactions. Cu(I) is a co-catalyst in the reaction, and is used to increase the rate of the reaction.[7]

Aryl halides and pseudohalides

The choice of aryl halide or pseudohalide substrate (sp2-carbon) is one of the factors that mainly influence the reactivity of the Sonogashira catalytic system. The reactivity of halides is higher towards iodine, and vinyl hallides are more reactive than analogous aryl halides.

Aryl triflates can also be employed instead of aryl halides.

Arenediazonium precursors

Arenediazonium salts have been reported as an alternative to aryl halides for the Sonogashira coupling reaction. Gold(I) chloride has been used as co-catalyst combined with palladium(II) chloride in the coupling of arenediazonium salts with terminal alkynes, a process carried out in the presence of bis-2,6-diisopropylphenyl dihydroimidazolium chloride (IPr NHC) (5 mol%) to in situ generate a NHC–palladium complex, and 2,6-di-tert-butyl-4-methylpyridine (DBMP) as base in acetonitrile as solvent at room temperature.[19] This coupling can be carried out starting from anilines by formation of the diazonium salt followed by in situ Sonogashira coupling, where anilines are transformed into diazonium salt and furtherly converted into alkyne by coupling with phenylacetylene.


Various aromatic alkynes can be employed to yield desired disubstituted products with satisfactorily yields. Aliphatic alkynes are generally less reactive.


Due to the crucial role of base, specific amines must be added in excess or as solvent for the reaction to proceed. It has been discovered that secondary amines such as piperidine, morpholine, or diisopropylamine in particular can react efficiently and reversibly with trans-RPdX(PPh3)2 complexes by substituting one PPh3 ligand. The equilibrium constant of this reaction is dependent on R, X, a factor for basicity, and the amine's steric hindrance.[20] The result is competition between the amine and the alkyne group for this ligand exchange, which is why the amine is generally added in excess to promote preferential substitution.

Reaction variations

Copper-free Sonogashira coupling

While a copper co-catalyst is added to the reaction to increase reactivity, the presence of copper can result in the formation of alkyne dimers. This leads to what is known as the Glaser coupling reaction, which is an undesired formation of homocoupling products of acetylene derivatives upon oxidation. As a result, when running a Sonogashira reaction with a copper co-catalyst, it is necessary to run the reaction in an inert atmosphere to avoid the unwanted dimerization. Copper-free variations to the Sonogashira reaction have been developed to avoid the formation of the homocoupling products.[17][21] There are other cases when the use of copper should be avoided, such as coupling reactions involving substrates which potential copper ligands, for instance free-base porphyrins.[9]

Inverse Sonogashira coupling

In an inverse Sonogashira coupling the reactants are an aryl or vinyl compound and an alkynyl halide.[22]

Catalyst variations

Silver co-catalysis

In some cases stoichiometric amounts of silver oxide can be used in place of CuI for copper-free Sonogashira couplings.[9]

Nickel catalysts

Recently, a nickel-catalyzed Sonogashira coupling has been developed which allows for the coupling of non-activated alkyl halides to acetylene without the use of palladium, although a copper co-catalyst is still needed.[23] It has also been reported that gold can be used as a heterogeneous catalyst, which was demonstrated in the coupling of phenylacetylene and iodobenzene with an Au/CeO2 catalyst.[24][25] In this case, catalysis occurs heterogeneously on the Au nanoparticles,[25][26] with Au(0) as the active site.[27] Selectivity to the desirable cross coupling product was also found to be enhanced by supports such as CeO2 and La2O3.[27] Additionally, iron-catalyzed Sonogashira couplings have been investigated as relatively cheap and non-toxic alternatives to palladium. Here, FeCl3 is proposed to act as the transition-metal catalyst and Cs2CO3 as the base, thus theoretically proceeding through a palladium-free and copper-free mechanism.[28]

at 135 °C, 72 h[28]

While the copper-free mechanism has been shown to be viable, attempts to incorporate the various transition metals mentioned above as less expensive alternatives to palladium catalysts have shown a poor track record of success due to contamination of the reagents with trace amounts of palladium, suggesting that these theorized pathways are extremely unlikely, if not impossible, to achieve.[29]

Studies shown that organic and inorganic starting materials can also contain enough (ppb level) palladium for the coupling.[30]

Gold and Palladium co-catalysis

A highly efficient gold and palladium combined methodology for the Sonogashira coupling of a wide array of electronically and structurally diverse aryl and heteroaryl halides have been reported.[31] The orthogonal reactivity of the two metals shows high selectivity and extreme functional group tolerance in Sonogashira coupling. A brief mechanistic study reveals that the gold-acetylide intermediate enters into palladium catalytic cycle at the transmetalation step.

Dendrimeric palladium complexes

The issues dealing with recovery of the often expensive catalyst after product formation poses a serious drawback for large-scale applications of homogeneous catalysis.[9] Structures known as metallodendrimers combine the advantages of homogeneous and heterogeneous catalysts, as they are soluble and well defined on the molecular level, and yet they can be recovered by precipitation, ultrafiltration, or ultracentrifugation.[32] Some recent examples can be found about the use of dendritic palladium complex catalysts for the copper-free Sonogashira reaction. Thus, several generations of bidentate phosphine palladium(II) polyamino dendritic catalysts have been used solubilized in triethylamine for the coupling of aryl iodides and bromides at 25-120 °C, and of aryl chlorides, but in very low yields.[33] The dendrimeric catalysts could usually be recovered by simple precipitation and filtration and reused up to five times, with diminished activity produced by dendrimer decomposition and not by palladium leaching being observed. These dendrimeric catalysts showed a negative dendritic effect; that is, the catalyst efficiency decreases as the dendrimer generation increases. The recyclable polymeric phosphine ligand shown below is obtained from ring-opening metathesis polymerization of a norbornene derivative, and has been used in the copper co-catalyzed Sonogashira reaction of methyl piodobenzoate and phenylacetylene using Pd(dba)2•CHCl3 as a palladium source.[34] Despite recovery by filtration, polymer catalytic activity decreased by approximately 4-8% in each recycle experiment.

Nitrogen ligands

Pyridines and pyrimidines have shown good complexation properties for palladium and have been employed in the formation of catalysts suitable for Sonogashira couplings. The dipyrimidyl-palladium complex shown below has been employed in the copper-free coupling of iodo-, bromo-, and chlorobenzene with phenylacetylene using N-butylamine as base in THF solvent at 65 °C. Furthermore, all structural features of this complex have been characterized by extensive X-ray analysis, verifying the observed reactivity.[35]

More recently, the dipyridylpalladium complex has been obtained and has been used in the copper-free Sonogashira coupling reaction of aryl iodides and bromides in N-methylpyrrolidinone (NMP) using tetra-n-butylammonium acetate (TBAA) as base at room temperature. This complex has also been used for the coupling of aryl iodides and bromides in refluxing water as solvent and in the presence of air, using pyrrolidine as base and TBAB as additive,[36] although its efficiency was higher in N-methylpyrrolidinone (NMP) as solvent.

N-heterocyclic carbene (NHC) palladium complexes

N-heterocyclic carbenes (NHCs) have become one of the most important ligands in transition-metal catalysis. The success of normal NHCs is greatly attributed to their superior σ-donating capabilities as compared to phosphines, which is even greater in abnormal NHC counterparts. Employed as ligands in palladium complexes, NHCs contributed greatly to the stabilization and activation of precatalysts and have therefore found application in many areas of organometallic homogeneous catalysis, including Sonogashira couplings.[9][37][38]

An example of palladium(II) derived complex with normal NHC ligand.[39] Efficient iPEPPSI catalyst for Cu-free Sonogashira reaction in water.[37]

Interesting examples of abnormal NHCs are based on the mesoionic 1,2,3-triazol-5-ylidene structure. An efficient, cationic palladium catalyst of PEPPSI type, i.e., iPEPPSI (internal pyridine-enhanced precatalyst preparation stabilization and initiation) was demonstrated to efficiently catalyse the copper-free Sonogashira reaction in water as the only solvent, under aerobic conditions, in the absence of copper, amines, phosphines and other additives.[37]

Applications in Synthesis

Sonogashira couplings are employed in a wide array of synthetic reactions, primarily due to their success in facilitating the following challenging transformations:

Alkynylation reactions

The coupling of a terminal alkyne and an aromatic ring is the pivotal reaction when talking about applications of the copper-promoted or copper-free Sonogashira reaction. The list of cases where the typical Sonogashira reaction using aryl halides has been employed is large, and choosing illustrative examples is difficult. A recent use of this methodology is shown below for the coupling of iodinated phenylalanine with a terminal alkyne derived from d-biotin using an in situ generated Pd(0) species as catalyst, which allowed the preparation of alkynelinked phenylalanine derivative for bioanalytical applications.[40] There are also examples of the coupling partners both being attached to allyl resins, with the Pd(0) catalyst effecting cleavage of the substrates and subsequent Sonogashira coupling in solution.[41]

Natural products

Many metabolites found in nature contain alkyne or enyne moieties, and therefore, the Sonogashira reaction has found frequent utility in their syntheses.[42] Several of the most recent and promising applications of this coupling methodology toward the total synthesis of natural products exclusively employed the typical copper-cocatalyzed reaction.

An example of the coupling of an aryl iodide to an aryl acetylene can be seen in the reaction of the iodinated alcohol and the tris(isopropyl)silylacetylene, which gave alkyne, an intermediate in the total synthesis of the benzindenoazepine alkaloid bulgaramine.

There are other recent examples of the use of aryl iodides for the preparation of intermediates under typical Sonogashira conditions, which, after cyclization, yield natural products such as benzylisoquinoline [43] or indole alkaloids[44] An example is the synthesis of the benzylisoquinoline alkaloids (+)-(S)-laudanosine and (–)-(S)-xylopinine. The synthesis of these natural products involved the use of Sonogashira cross-coupling to build the carbon backbone of each molecule.[45]

Enynes and enediynes

The 1,3-enyne moiety is an important structural unit for biologically active and natural compounds. It can be derived from vinylic systems and terminal acetylenes by using a configuration-retention stereospecific procedure such as the Sonogashira reaction. Vinyl iodides are the most reactive vinyl halides to Pd0 oxidative addition, and their use is therefore most frequent for Sonogashira cross-coupling reactions due to the usually milder conditions employed. Some examples include:

  • The coupling of 2-iodo-prop-2-enol with a wide range of acetylenes such as TMSA to give enynyl alcohol, which can be oxidized to the corresponding R-alkynylated acroleins [46]
  • The preparation of an alk-2-ynylbuta-1,3-dienes from the cross-coupling of a diiodide and phenylacetylene, as shown below.[47]


The versatility of the Sonogashira reaction makes it a widely used reaction in the synthesis of a variety of compounds. One such pharmaceutical application is in the synthesis of SIB-1508Y, which is more commonly known as Altinicline. Altinicline is a nicotinic acetylcholine receptor agonist that has shown potential in the treatment of Parkinson’s disease, Alzheimer’s disease, Tourette’s syndrome, Schizophrenia, and attention deficit hyperactivity disorder (ADHD).[3][48] As of 2008, Altinicline has undergone Phase II clinical trials.[49][50]

Illustrating the Sonogashira cross coupling reactions is in the synthesis of imidazopyridine derivatives.[51]


  1. Sonogashira, K. (2002), "Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides", J. Organomet. Chem., 653 (1–2): 46–49, doi:10.1016/s0022-328x(02)01158-0
  2. King, A. O., Yasuda, N. (2005), "A Practical and Efficient Process for the Preparation of Tazarotene", Top. Organomet. Chem., 9 (5): 646–650, doi:10.1021/op050080xCS1 maint: multiple names: authors list (link)
  3. King, A. O.; Yasuda, N. (2004), "Palladium-Catalyzed Cross-Coupling Reactions in the Synthesis of Pharmaceuticals Organometallics in Process Chemistry", Top. Organomet. Chem., Topics in Organometallic Chemistry, 6: 205–245, doi:10.1007/b94551, ISBN 978-3-540-01603-8
  4. Cassar, L. (1975), "Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes", J. Organomet. Chem., 93 (2): 253–257, doi:10.1016/S0022-328X(00)94048-8
  5. Dieck, H.A.; Heck, R.F. (1975), "Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives", J. Organomet. Chem., 93 (2): 259–263, doi:10.1016/S0022-328X(00)94049-X
  6. Sonogashira, K.; Tohda, Y.; Hagihara, N. (1975), "A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines", Tetrahedron Lett., 16 (50): 4467–4470, doi:10.1016/s0040-4039(00)91094-3
  7. Chinchilla, R.; Nájera, C. (2011), "Recent advances in Sonogashira reactions", Chem. Soc. Rev., 40 (10): 5084–5121, doi:10.1039/c1cs15071e
  8. Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. (2012), "Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize", Angew. Chem. Int. Ed., 51 (21): 5062–5085, doi:10.1002/anie.201107017
  9. Chinchilla, R.; Nájera, C. (2007), "The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry", Chem. Rev., 107 (3): 874–922, doi:10.1021/cr050992x, PMID 17305399
  10. Stambuli, J. P.; Buhl, M.; Hartwig, J. F. (2002), "Synthesis, Characterization, and Reactivity of Monomeric, Arylpalladium Halide Complexes with a Hindered Phosphine as the Only Dative Ligand", J. Am. Chem. Soc., 124 (32): 9346–9347, doi:10.1021/ja0264394, PMID 12167009
  11. Amatore, C.; Jutand, A. (2000), "Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions", Acc. Chem. Res., 33 (5): 314–321, CiteSeerX, doi:10.1021/ar980063a
  12. Soheili, A.; Albaneze-Walker, J.; Murry, J. A.; Dormer, P. G.; Hughes, D. L. (2003), "Efficient and General Protocol for the Copper-Free Sonogashira Coupling of Aryl Bromides at Room Temp", Org. Lett., 5 (22): 4191–4194, doi:10.1021/ol035632f
  13. Gazvoda, Martin; Virant, Miha; Pinter, Balazs; Košmrlj, Janez (16 November 2018). "Mechanism of copper-free Sonogashira reaction operates through palladium-palladium transmetallation". Nature Communications. 9 (1). doi:10.1038/s41467-018-07081-5. PMC 6240041.
  14. Tougerti, A.; Negri, S.; Jutand, A. (2007), "Mechanism of the Copper-Free Palladium-Catalyzed Sonagashira Reactions: Multiple Role of Amines", Chem. Eur. J., 13 (2): 666–676, doi:10.1002/chem.200600574, PMID 16991183
  15. Plenio, H. (2008), "Catalysts for the Sonogashira Coupling—The Crownless Again Shall Be King", Angew. Chem. Int. Ed., 47 (37): 6954–6956, doi:10.1002/anie.200802270, PMID 18683173
  16. Kohnen, A. L; Danheiser, R. L.; Denmark S. E.; Liu X. (2007), "Synthesis of Terminal 1,3-Diynes Via Sonogashira Coupling of Vinylidene Chloride Followed by Elimination. Preparation of 1,3-Decadiyne", Organic Syntheses, 84: 77–87, doi:10.15227/orgsyn.084.0077, PMC 2901882
  17. Bohm, V. P. W.; Herrmann, W. A. (2000), "A Copper-Free Procedure for the Palladium-Catalyzed Sonogashira Reaction of Aryl Bromides with Terminal Alkynes at Room Temperature", European Journal of Organic Chemistry, 200 (22): 3679–3681, doi:10.1002/1099-0690(200011)2000:22<3679::aid-ejoc3679>;2-x
  18. Yin, L.; Liebscher, J. (2006), "Carbon-Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts", Chem. Rev., 107 (1): 133–173, doi:10.1021/cr0505674, PMID 17212474
  19. Panda, B.; Sarkar, T. K.(2010),"Gold and palladium combined for the Sonogashira-type cross-coupling of arenediazonium salts" Chem. Commun., 46, 3131–3133, doi: 10.1039/c001277g
  20. Jutand, A.; Négri, S.; Principaud; A. (2005), "Formation of ArPdXL(amine) Complexes by Substitution of One Phosphane Ligand by an Amine in trans-ArPdX(PPh3)2 Complexes", European Journal of Inorganic Chemistry, 2005 (4): 631–635, doi:10.1002/ejic.200400413
  21. Mery, D.; Heuze, K.; Astruc, D. (2003), "A very efficient, copper-free palladium catalyst for the Sonogashira reaction with aryl halides", Chem. Commun., 15 (15): 1934–1935, doi:10.1039/B305391C
  22. Dudnik, A.; Gevorgyan, V. (2010). "Formal Inverse Sonogashira Reaction: Direct Alkynylation of Arenes and Heterocycles with Alkynyl Halides". Angewandte Chemie International Edition in English. 49 (12): 2096–2098. doi:10.1002/anie.200906755. PMC 3132814. PMID 20191647.
  23. Vechorkin, O.; Barmaz, D.; Proust, V., Hu, X. (2009), "Ni-Catalyzed Sonogashira Coupling of Nonactivated Alkyl Halides: Orthogonal Functionalization of Alkyl Iodides, Bromides, and Chlorides", J. Am. Chem. Soc., 131 (34): 12078–12079, doi:10.1021/ja906040t, PMID 19670863CS1 maint: multiple names: authors list (link)
  24. Gonzalez-Arallano, C.; Abad, A.; Corma, A.; Garcia, H.; Iglesias, M.; Sanchez, F. (2007), "Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions", Angew. Chem. Int. Ed., 46 (9): 1536–1538, doi:10.1002/anie.200604746, PMID 17226890
  25. Corma, A.; Juarez, R.; Boronat, M.; Sanchez, F.; Iglesias, M.; Garcia, H. (2011), "Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities", Chem. Commun., 47 (5): 1446–1448, doi:10.1039/C0CC04564K, PMID 21183985
  26. Kyriakou, G., Beaumont, S. K., Humphrey, S. M., Antonetti, C. and Lambert, R. M. (2010), "Sonogashira Coupling Catalyzed by Gold Nanoparticles: Does Homogeneous or Heterogeneous Catalysis Dominate?", Chemcatchem, 2 (11): 1444–1449, doi:10.1002/cctc.201000154CS1 maint: multiple names: authors list (link)
  27. Beaumont, S. K., Kyriakou, G., Lambert, R. M. (2010), "Identity of the active site in gold nanoparticle-catalyzed Sonogashira coupling of phenylacetylene and iodobenzene." (PDF), J. Am. Chem. Soc., 132 (35): 12246–12248, doi:10.1021/ja1063179CS1 maint: multiple names: authors list (link)
  28. M. Carril; A. Correa; C. Bolm (2008), "Iron-Catalyzed Sonogashira Reaction", Angew. Chem., 120 (26): 4940–4943, doi:10.1002/ange.200801539
  29. Thorsten Lauterbach†, Madeleine Livendahl†, Antonio Rosellon†, Pablo Espinet‡* and Antonio M. Echavarren†* (2010), "Unlikeliness of Pd-Free Gold(I)-Catalyzed Sonogashira Coupling Reactions", Organic Letters, 12 (13): 3006–3009, doi:10.1021/ol101012nCS1 maint: multiple names: authors list (link)
  30. Tolnai, L., G.; Gonda, ZS.; Novák, Z. (2010). "Dramatic Impact of ppb Levels of Palladium on the "Copper-Catalyzed" Sonogashira Coupling". Chemistry: A European Journal. 16 (39): 11822–11826. doi:10.1002/chem.201001880.CS1 maint: multiple names: authors list (link)
  31. Panda, B.; Sarkar, T. K. (2013), "Gold and Palladium Combined for the Sonogashira Coupling of Aryl and Heteroaryl Halides", Synthesis, 45 (6): 817–829, doi:10.1055/s-0032-1318119
  32. Astruc, Didier; Heuzé, Karine; Gatard, Sylvain; Méry, Denise; Nlate, Sylvain; Plault, Lauriane (February 2005). "Metallodendritic Catalysis for Redox and CarbonCarbon Bond Formation Reactions: A Step towards Green Chemistry". Advanced Synthesis & Catalysis. 347 (2–3): 329–338. doi:10.1002/adsc.200404247.
  33. Heuzé, Karine; Méry, Denise; Gauss, Dominik; Astruc, Didier (2003). "Copper-free, recoverable dendritic Pd catalysts for the Sonogashira reaction". Chem. Commun. (18): 2274–2275. doi:10.1039/B307116M.
  34. Yang, Yun-Chin; Luh, Tien-Yau (December 2003). "Polymeric Phosphine Ligand from Ring-Opening Metathesis Polymerization of a Norbornene Derivative. Applications in the Heck, Sonogashira, and Negishi Reactions". The Journal of Organic Chemistry. 68 (25): 9870–9873. doi:10.1021/jo035318z. PMID 14656129.
  35. Buchmeiser, Michael R.; Schareina, Thomas; Kempe, Rhett; Wurst, Klaus (2001). "Bis(pyrimidine)-based palladium catalysts: Synthesis, X-ray structure and applications in Heck–, Suzuki–, Sonogashira–Hagihara couplings and amination reactions". J. Organomet. Chem. 634: 39–46. doi:10.1016/S0022-328X(01)01083-X.
  36. Gil-Moltó, J.; Karström, S.; Nájera, C. (2005), "Di(2-pyridyl)methylamine–palladium dichloride complex covalently anchored to a styrene-maleic anhydride co-polymer as recoverable catalyst for C–C cross-coupling reactions in water", Tetrahedron, 61 (51): 12168–12176, doi:10.1016/j.tet.2005.08.122
  37. Gazvoda, M.; Virant, M; Pevec, A.; Urankar, D.; Bolje, A.; Kočevar, M.; Košmrlj, J. (2016), "A mesoionic bis(Py-tzNHC) palladium(II) complex catalyses green Sonogashira reaction through an unprecedented mechanism", Chem. Commun., 52 (8): 1571–1574, doi:10.1039/c5cc08717a, PMID 26575368
  38. Crudden, Cathleen M.; Allen, Daryl P. (December 2004). "Stability and reactivity of N-heterocyclic carbene complexes". Coordination Chemistry Reviews. 248 (21–24): 2247–2273. doi:10.1016/j.ccr.2004.05.013.
  39. Batey, R. A.; Shen, M.; Lough, A. J. (2002), "Carbamoyl-Substituted N-Heterocyclic Carbene Complexes of Palladium(II): Application to Sonogashira Cross-Coupling Reactions", Organic Letters, 4 (9): 1411–1414, doi:10.1021/ol017245g
  40. Corona, C.; Bryant, B. K.; Arterburn, J. B. Organic Letters 2006, 8, 1883
  41. Tulla-Puche, J.; Barany, G. Tetrahedron 2005, 61, 2195
  42. Hong, B.-C.; Nimje, R. Y. Curr. Organic Chemistry 2006, 10, 2191.
  43. Mujahidin, D.; Doye, S. Eur" Journal of Organic Chemistry 2005, 2689
  44. Pedersen, J. M.; Bowman, W. R.; Elsegood, M. R. J.; Fletcher, A. J.; Lovell, P. J" Journal of Organic Chemistry 2005, 70, 10615.
  45. Mujahidin, Didin; Doye, Sven (1 July 2005). "Enantioselective Synthesis of (+)-(S)-Laudanosine and (−)-(S)-Xylopinine". European Journal of Organic Chemistry. 2005 (13): 2689–2693. doi:10.1002/ejoc.200500095.
  46. Thongsornkleeb, C.; Danhaiser, R. L" Journal of Organic Chemistry 2005, 70, 2364
  47. Shao, L.-X.; Shi, M. (2005), "Facile Synthesis of 2-Alkynyl Buta-1,3-dienes via Sonogashira Cross-Coupling Methodology", J. Org. Chem., 70 (21): 8635–8637, doi:10.1021/jo051434l, PMID 16209628
  48. Bleicher, L.S.; Cosford, N.D.P.; Herbaut, A.; McCallum, J. S.; McDonald, I. A. (1998), "A Practical and Efficient Synthesis of the Selective Neuronal Acetylcholine-Gated Ion Channel Agonist (S)-(−)-5-Ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine Maleate (SIB-1508Y)", Journal of Organic Chemistry, 63 (4): 1109–1118, doi:10.1021/jo971572d
  49. Wang, David X.; Booth, Heather; Lerner-Marmarosh, Nicole; Osdene, Thomas S.; Abood, Leo G. (1 September 1998). "Structure-activity relationships for nicotine analogs comparing competition for [3H]nicotine binding and psychotropic potency". Drug Development Research. 45 (1): 10–16. doi:10.1002/(SICI)1098-2299(199809)45:1<10::AID-DDR2>3.0.CO;2-G.
  50. Parkinson Study, Group (14 February 2006). "Randomized placebo-controlled study of the nicotinic agonist SIB-1508Y in Parkinson disease". Neurology. 66 (3): 408–410. doi:10.1212/01.wnl.0000196466.99381.5c. PMID 16476941.
  51. Bakherad, M.; Nasr-Isfahani, H.; Keivanloo, A.; Doostmohammadi, N. (2008), "Pd–Cu catalyzed heterocyclization during Sonogashira coupling: synthesis of 2-benzylimidazo[1,2-a]pyridine", J. Organomet. Chem., 49 (23): 3819–3822, doi:10.1016/j.tetlet.2008.03.141
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.