Sodium ethoxide

Sodium ethoxide is the organic compound with the formula C2H5ONa. It is a white solid, although impure samples appear yellow or brown. It dissolves in polar solvents such as ethanol. It is commonly used as a strong base.[2]

Sodium ethoxide
IUPAC name
Sodium ethoxide
Other names
Sodium ethanolate, sodium ethylate (obsolete)
3D model (JSmol)
ECHA InfoCard 100.004.989
EC Number
  • 205-487-5
Molar mass 68.05 g/mol
Appearance white
Density 0.868 g/cm^3 (of a 21 wt% solution in ethanol)
Melting point 260 °C (500 °F; 533 K)
Solubility ethanol and methanol
Acidity (pKa) 15.5[1]
Safety data sheet Oxford MSDS
GHS pictograms
GHS Signal word Danger
H228, H251, H302, H314, H318
P210, P235+410, P240, P241, P260, P264, P270, P280, P301+312, P301+330+331, P303+361+353, P304+340, P305+351+338, P310, P321, P330, P363, P370+378, P405, P407, P413, P420, P501
NFPA 704 (fire diamond)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references


Few procedures have been reported to the anhydrous solid. Instead the material is typically prepared in a solution with ethanol. It is commercially available and as a solution in ethanol. It is easily prepared in the laboratory by treating sodium metal with absolute ethanol:[3]

2 C2H5OH + 2 Na → 2 C2H5ONa + H2

An alternative, cheaper route involves the reaction of sodium hydroxide with anhydrous ethanol. This reaction suffers from incomplete conversion to the alkoxide, but for less stringent applications, full conversion is unimportant.


Solid samples of sodium ethoxide gradually turn dark on storage in dry air because of oxidation.[4] In moist air, it hydrolyzes rapidly to sodium hydroxide. The conversion is not obvious and typical samples of NaOEt are contaminated with NaOH.

Sodium ethoxide is commonly used in the Claisen condensation and malonic ester synthesis. Sodium ethoxide may either deprotonate the α-position of an ester molecule, forming an enolate, or the ester molecule may undergo a nucleophilic substitution called transesterification. If the starting material is an ethyl ester, trans-esterification is irrelevant since the product is identical to the starting material. In practice, the alcohol/alkoxide solvating mixture must match the alkoxy components of the reacting esters to minimize the number of different products.

Many alkoxides are prepared by salt metathesis from sodium ethoxide.


Sodium ethoxide is a strong base, and is therefore corrosive.

See also


  1. disassociation constant of ethanol, referenced in the CRC Handbook of Chemistry and Physics 87th edition.
  2. K. Sinclair Whitaker, D. Todd Whitaker, "Sodium Ethoxide" Encyclopedia of Reagents for Organic Synthesis 2001.doi:10.1002/047084289X.rs070
  3. C. S. Marvel and E. E. Dreger (1926). "Ethyl Acetopyruvate". Organic Syntheses. 6: 40.; Collective Volume, 1, p. 328
  4. M. Eagleson "Concise encyclopedia chemistry" p.997.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.