# Projective bundle

In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces.

By definition, a scheme X over a Noetherian scheme S is a Pn-bundle if it is locally a projective n-space; i.e., $X\times _{S}U\simeq \mathbb {P} _{U}^{n}$ and transition automorphisms are linear. Over a regular scheme S such as a smooth variety, every projective bundle is of the form $\mathbb {P} (E)$ for some vector bundle (locally free sheaf) E.

## The projective bundle of a vector bundle

Every vector bundle over a variety X gives a projective bundle by taking the projective spaces of the fibers, but not all projective bundles arise in this way: there is an obstruction in the cohomology group H2(X,O*). In particular, if X is a compact Riemann surface, the obstruction vanishes i.e. H2(X,O*)=0.

The projective bundle of a vector bundle E is the same thing as the Grassmann bundle $G_{1}(E)$ of 1-planes in E.

The projective bundle P(E) of a vector bundle E is characterized by the universal property that says:

Given a morphism f: TX, to factorize f through the projection map p: P(E) → X is to specify a line subbundle of f*E.

For example, taking f to be p, one gets the line subbundle O(-1) of p*E, called the tautological line bundle on P(E). Moreover, this O(-1) is a universal bundle in the sense that when a line bundle L gives a factorization f = pg, L is the pullback of O(-1) along g. See also Cone#O(1) for a more explicit construction of O(-1).

On P(E), there is a natural exact sequence (called the tautological exact sequence):

$0\to {\mathcal {O}}_{\mathbf {P} (E)}(-1)\to p^{*}E\to Q\to 0$ where Q is called the tautological quotient-bundle.

Let EF be vector bundles (locally free sheaves of finite rank) on X and G = F/E. Let q: P(F) → X be the projection. Then the natural map O(-1) → q*Fq*G is a global section of the sheaf hom Hom(O(-1), q*G) = q* GO(1). Moreover, this natural map vanishes at a point exactly when the point is a line in E; in other words, the zero-locus of this section is P(E).

A particularly useful instance of this construction is when F is the direct sum E ⊕ 1 of E and the trivial line bundle (i.e., the structure sheaf). Then P(E) is a hyperplane in P(E ⊕ 1), called the hyperplane at infinity, and the complement of P(E) can be identified with E. In this way, P(E ⊕ 1) is referred to as the projective completion (or "compactification") of E.

The projective bundle P(E) is stable under twisting E by a line bundle; precisely, given a line bundle L, there is the natural isomorphism:

$g:\mathbf {P} (E){\overset {\sim }{\to }}\mathbf {P} (E\otimes L)$ such that $g^{*}({\mathcal {O}}(-1))\simeq {\mathcal {O}}(-1)\otimes p^{*}L.$ (In fact, one gets g by the universal property applied to the line bundle on the right.)

## Cohomology ring and Chow group

Let X be a complex smooth projective variety and E a complex vector bundle of rank r on it. Let p: P(E) → X be the projective bundle of E. Then the cohomology ring H*(P(E)) is an algebra over H*(X) through the pullback p*. Then the first Chern class ζ = c1(O(1)) generates H*(P(E)) with the relation

$\zeta ^{r}+c_{1}(E)\zeta ^{r-1}+\cdots +c_{r}(E)=0$ where ci(E) is the i-th Chern class of E. One interesting feature of this description is that one can define Chern classes as the coefficients in the relation; this is the approach taken by Grothendieck.

Over fields other than the complex field, the same description remains true with Chow ring in place of cohomology ring (still assuming X is smooth). In particular, for Chow groups, there is the direct sum decomposition

$A_{k}(\mathbf {P} (E))=\bigoplus _{i=0}^{r-1}\zeta ^{i}A_{k-r+1+i}(X).$ As it turned out, this decomposition remains valid even if X is not smooth nor projective. In contrast, Ak(E) = Ak-r(X), via the Gysin homomorphism, morally because that the fibers of E, the vector spaces, are contractible.