# Perron number

In mathematics, a **Perron number** is an algebraic integer α which is real and exceeds 1, but such that its conjugate elements are all less than α in absolute value. For example, the larger of the two roots of the irreducible polynomial
is a Perron number.

Perron numbers are named after Oskar Perron; the Perron–Frobenius theorem asserts that, for a real square matrix with positive algebraic coefficients whose largest eigenvalue is greater than one, this eigenvalue is a Perron number. As a closely related case, the Perron number of a graph is defined to be the spectral radius of its adjacency matrix.

Any Pisot number or Salem number is a Perron number, as is the Mahler measure of a monic integer polynomial.

## References

- Borwein, Peter (2007).
*Computational Excursions in Analysis and Number Theory*. Springer Verlag. p. 24. ISBN 0-387-95444-9.

This article is issued from
Wikipedia.
The text is licensed under Creative
Commons - Attribution - Sharealike.
Additional terms may apply for the media files.