Open mapping theorem (functional analysis)

In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem (named after Stefan Banach and Juliusz Schauder), is a fundamental result which states that if a continuous linear operator between Banach spaces is surjective then it is an open map. More precisely, (Rudin 1973, Theorem 2.11):

Open Mapping Theorem. If X and Y are Banach spaces and A : XY is a surjective continuous linear operator, then A is an open map (i.e. if U is an open set in X, then A(U) is open in Y).

One proof uses Baire's category theorem, and completeness of both X and Y is essential to the theorem. The statement of the theorem is no longer true if either space is just assumed to be a normed space, but is true if X and Y are taken to be Fréchet spaces.


The open mapping theorem has several important consequences:


Suppose A : XY is a surjective continuous linear operator. In order to prove that A is an open map, it is sufficient to show that A maps the open unit ball in X to a neighborhood of the origin of Y.

Let . Then


Since A is surjective:

But Y is Banach so by Baire's category theorem

That is, we have c in Y and r > 0 such that

Let vV, then

By continuity of addition and linearity, the difference rv satisfies

and by linearity again,

where we have set L=2k/r. It follows that

Our next goal is to show that VA(2LU).

Let yV. By (1), there is some x1 with ||x1|| < L and ||yAx1|| < 1/2. Define a sequence {xn} inductively as follows. Assume:

Then by (1) we can pick xn+1 so that:

so (2) is satisfied for xn+1. Let

From the first inequality in (2), {sn} is a Cauchy sequence, and since X is complete, sn converges to some xX. By (2), the sequence Asn tends to y, and so Ax = y by continuity of A. Also,

This shows that y belongs to A(2LU), so VA(2LU) as claimed. Thus the image A(U) of the unit ball in X contains the open ball V/2L of Y. Hence, A(U) is a neighborhood of 0 in Y, and this concludes the proof.


Local convexity of X  or Y  is not essential to the proof, but completeness is: the theorem remains true in the case when X and Y are F-spaces. Furthermore, the theorem can be combined with the Baire category theorem in the following manner (Rudin, Theorem 2.11):

  • Let X be a F-space and Y a topological vector space. If A : XY is a continuous linear operator, then either A(X) is a meager set in Y, or A(X) = Y. In the latter case, A is an open mapping and Y is also an F-space.

Furthermore, in this latter case if N is the kernel of A, then there is a canonical factorization of A in the form

where X / N is the quotient space (also an F-space) of X by the closed subspace N. The quotient mapping XX / N is open, and the mapping α is an isomorphism of topological vector spaces (Dieudonné, 12.16.8).

The open mapping theorem can also be stated as[1]

Let X and Y be two F-spaces. Then every continuous linear map of X onto Y is a TVS homomorphism.

where a linear map u : XY is a topological vector space (TVS) homomorphism if the induced map is a TVS-isomorphism onto its image.

See also


  • Rudin, Walter (1973), Functional Analysis, McGraw-Hill, ISBN 0-07-054236-8
  • Dieudonné, Jean (1970), Treatise on Analysis, Volume II, Academic Press
  • Trèves, François (1967), Topological Vector Spaces, Distributions and Kernels, Academic Press, Inc., pp. 166, 170, ISBN 0-486-45352-9

This article incorporates material from Proof of open mapping theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.