Nuclear spectroscopy

Nuclear spectroscopy is a superordinate concept of methods that uses properties of a nucleus to probe material properties.[1][2][3] By emission or absorption of radiation from the nucleus information of the local structure is obtained, as an interaction of an atom with its closest neighbours. Or a radiation spectrum of the nucleus is detected. Most methods base on hyperfine interactions, which are the interaction of the nucleus with its interaction of its atom's electrions and their interaction with the nearest neighbor atoms as well as external fields. Nuclear spectroscopy is mainly applied to solids and liquids, rarely in gases. Its methods are important tools in condensed matter physics[4][5] and solid state chemistry[6].


In nuclear physics these methods are used to study properties of the nucleus itself.

Methods for studies of the nucleus:

Methods for condensed matter studies:


  1. "Nuclear Spectroscopy - an overview: ScienceDirect Topics". ScienceDirect. Retrieved 2019-12-08.
  2. Glascock, Michael (2013-11-01). "Nuclear Spectroscopy". Treatise on Geochemistry: Second Edition. Researchgate. pp. 273–290. doi:10.1016/B978-0-08-095975-7.01419-4. Retrieved 2019-12-08.
  3. "Synopsis: Nuclear Spectroscopy Reveals New Shapes of Excited Nuclei". Physics. U.S.: American Physical Society. 2019-10-03. doi:10.1103/physrevlett.123.142502. Retrieved 2019-12-08.
  4. Nuclear condensed matter physics, Günter Schatz and Alois Weidinger, ISBN 978-0471954798
  5. Th. Wichert, N. Achtziger, H. Metzner, R. Sielemann: Perturbed angular correlation. In: G. Langouche (Hrsg.): Hyperfine Interactions of Defects in Semiconductors. Elsevier, Amsterdam 1992, ISBN 0-444-89134-X, S. 77.
  6. Methods in Physical Chemistry, Rolf Schäfer, Peter C. Schmidt, Print ISBN 9783527327454, Online ISBN 9783527636839, doi:10.1002/9783527636839
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.