Milk is a nutrient-rich, white liquid food produced by the mammary glands of mammals. It is the primary source of nutrition for infant mammals (including humans who are breastfed) before they are able to digest other types of food. Early-lactation milk contains colostrum, which carries the mother's antibodies to its young and can reduce the risk of many diseases. It contains many other nutrients[1] including protein and lactose. Interspecies consumption of milk is not uncommon, particularly among humans, many of whom consume the milk of other mammals.[2][3]

As an agricultural product, milk, also called dairy milk, is extracted from farm animals during or soon after pregnancy. Dairy farms produced about 730 million tonnes of milk in 2011,[4] from 260 million dairy cows.[5] India is the world's largest producer of milk, and is the leading exporter of skimmed milk powder, yet it exports few other milk products.[6][7] The ever increasing rise in domestic demand for dairy products and a large demand-supply gap could lead to India being a net importer of dairy products in the future.[8] New Zealand, Germany and the Netherlands are the largest exporters of milk products.[9] China and Russia were the world's largest importers of milk and milk products until 2016 when both countries became self-sufficient, contributing to a worldwide glut of milk.[10]

Throughout the world, more than six billion people consume milk and milk products. Over 750 million people live in dairy farming households.[11]

Etymology and terminology

The term "milk" comes from "Old English meoluc (West Saxon), milc (Anglian), from Proto-Germanic *meluks "milk" (source also of Old Norse mjolk, Old Frisian melok, Old Saxon miluk, Dutch melk, Old High German miluh, German Milch, Gothic miluks)".[12]

In food use, from 1961, the term milk has been defined under Codex Alimentarius standards as: "the normal mammary secretion of milking animals obtained from one or more milkings without either addition to it or extraction from it, intended for consumption as liquid milk or for further processing."[13] The term dairy relates to animal milk and animal milk production.

A substance secreted by pigeons to feed their young is called "crop milk" and bears some resemblance to mammalian milk, although it is not consumed as a milk substitute.[14]

Non-dairy milks

The definition above precludes non-animal products which resemble dairy milk in color and texture, such as almond milk, coconut milk, rice milk, and soy milk. In English, the word "milk" has been used to refer to "milk-like plant juices" since 1200 AD.[15] Traditionally a variety of non-dairy products have been described with the word milk, including the traditional digestive remedies milk of magnesia[16] and milk of bismuth.[17] Latex, the complex inedible emulsion that exudes from the stems of certain plants, is generally described as milky and is often sold as "rubber milk" because of its white appearance. The word latex itself is deducted from the Spanish word for milk.[18]

A 2018 survey by the International Food Information Council Foundation suggests consumers in the United States do not typically confuse plant-based milk analogues with animal milk and dairy products.[19][20] In the US, (mostly plant-based) milk alternatives now command 13% of the "milk" market, leading the US dairy industry to attempt, multiple times, to sue producers of dairy milk alternatives, to have the name "milk" limited to animal milk, so far without success.[21] The Food and Drug Administration generally supports restricting the term "milk", while the US Department of Agriculture supports the continued use of terms such as "soymilk".[22] In the European Union, words such as milk, butter, cheese, cream and yogurt are legally restricted to animal products, with exceptions such as coconut milk, almond milk, peanut butter, and ice cream.[23]

Production of milk substitutes from vats of brewer's yeast is under development by organizations including Impossible Foods, Muufri, and the biohacker group Real Vegan Cheese. Some components would be chemically identical to those in animal-derived milk; others, such as lactose, to which many people are allergic, may be substituted.[24]

Types of consumption

Milk consumption occurs in two distinct overall types: a natural source of nutrition for all infant mammals and a food product obtained from other mammals for consumption by humans of all ages.

Nutrition for infant mammals

In almost all mammals, milk is fed to infants through breastfeeding, either directly or by expressing the milk to be stored and consumed later. The early milk from mammals is called colostrum. Colostrum contains antibodies that provide protection to the newborn baby as well as nutrients and growth factors.[25] The makeup of the colostrum and the period of secretion varies from species to species.[26]

For humans, the World Health Organization recommends exclusive breastfeeding for six months and breastfeeding in addition to other food for up to two years of age or more.[27] In some cultures it is common to breastfeed children for three to five years, and the period may be longer.[28]

Fresh goats' milk is sometimes substituted for breast milk, which introduces the risk of the child developing electrolyte imbalances, metabolic acidosis, megaloblastic anemia, and a host of allergic reactions.[29]

Food product for humans

In many cultures, especially in the West, humans continue to consume milk beyond infancy, using the milk of other mammals (especially cattle, goats and sheep) as a food product. Initially, the ability to digest milk was limited to children as adults did not produce lactase, an enzyme necessary for digesting the lactose in milk. People therefore converted milk to curd, cheese and other products to reduce the levels of lactose. Thousands of years ago, a chance mutation spread in human populations in Europe that enabled the production of lactase in adulthood. This mutation allowed milk to be used as a new source of nutrition which could sustain populations when other food sources failed.[30] Milk is processed into a variety of products such as cream, butter, yogurt, kefir, ice cream, and cheese. Modern industrial processes use milk to produce casein, whey protein, lactose, condensed milk, powdered milk, and many other food-additives and industrial products.

Whole milk, butter and cream have high levels of saturated fat.[31][32] The sugar lactose is found only in milk, forsythia flowers, and a few tropical shrubs. The enzyme needed to digest lactose, lactase, reaches its highest levels in the human small intestine after birth and then begins a slow decline unless milk is consumed regularly.[33] Those groups who do continue to tolerate milk, however, often have exercised great creativity in using the milk of domesticated ungulates, not only of cattle, but also sheep, goats, yaks, water buffalo, horses, reindeer and camels. India is the largest producer and consumer of cattle and buffalo milk in the world.[34]

Per capita consumption of milk and milk products in selected countries in 2011[35]
CountryMilk (liters)Cheese (kg)Butter (kg)
 United Kingdom105.910.93.0
 United States75.815.12.8


Humans first learned to consume the milk of other mammals regularly following the domestication of animals during the Neolithic Revolution or the development of agriculture. This development occurred independently in several global locations from as early as 9000–7000 BC in Mesopotamia[36] to 3500–3000 BC in the Americas.[37] People first domesticated the most important dairy animals – cattle, sheep and goats – in Southwest Asia, although domestic cattle had been independently derived from wild aurochs populations several times since.[38] Initially animals were kept for meat, and archaeologist Andrew Sherratt has suggested that dairying, along with the exploitation of domestic animals for hair and labor, began much later in a separate secondary products revolution in the fourth millennium BC.[39] Sherratt's model is not supported by recent findings, based on the analysis of lipid residue in prehistoric pottery, that shows that dairying was practiced in the early phases of agriculture in Southwest Asia, by at least the seventh millennium BC.[40][41]

From Southwest Asia domestic dairy animals spread to Europe (beginning around 7000 BC but did not reach Britain and Scandinavia until after 4000 BC),[42] and South Asia (7000–5500 BC).[43] The first farmers in central Europe[44] and Britain[45] milked their animals. Pastoral and pastoral nomadic economies, which rely predominantly or exclusively on domestic animals and their products rather than crop farming, were developed as European farmers moved into the Pontic-Caspian steppe in the fourth millennium BC, and subsequently spread across much of the Eurasian steppe.[46] Sheep and goats were introduced to Africa from Southwest Asia, but African cattle may have been independently domesticated around 7000–6000 BC.[47] Camels, domesticated in central Arabia in the fourth millennium BC, have also been used as dairy animals in North Africa and the Arabian Peninsula.[48] The earliest Egyptian records of burn treatments describe burn dressings using milk from mothers of male babies.[49] In the rest of the world (i.e., East and Southeast Asia, the Americas and Australia) milk and dairy products were historically not a large part of the diet, either because they remained populated by hunter-gatherers who did not keep animals or the local agricultural economies did not include domesticated dairy species. Milk consumption became common in these regions comparatively recently, as a consequence of European colonialism and political domination over much of the world in the last 500 years.

In the Middle Ages, milk was called the "virtuous white liquor" because alcoholic beverages were safer to consume than water.[50]


The growth in urban population, coupled with the expansion of the railway network in the mid-19th century, brought about a revolution in milk production and supply. Individual railway firms began transporting milk from rural areas to London from the 1840s and 1850s. Possibly the first such instance was in 1846, when St Thomas's Hospital in Southwark contracted with milk suppliers outside London to ship milk by rail.[51] The Great Western Railway was an early and enthusiastic adopter, and began to transport milk into London from Maidenhead in 1860, despite much criticism. By 1900, the company was transporting over 25 million gallons annually.[52] The milk trade grew slowly through the 1860s, but went through a period of extensive, structural change in the 1870s and 1880s.

Urban demand began to grow, as consumer purchasing power increased and milk became regarded as a required daily commodity. Over the last three decades of the 19th century, demand for milk in most parts of the country doubled, or in some cases, tripled. Legislation in 1875 made the adulteration of milk illegal – this combined with a marketing campaign to change the image of milk. The proportion of rural imports by rail as a percentage of total milk consumption in London grew from under 5% in the 1860s to over 96% by the early 20th century. By that point, the supply system for milk was the most highly organized and integrated of any food product.[51]

The first glass bottle packaging for milk was used in the 1870s. The first company to do so may have been the New York Dairy Company in 1877. The Express Dairy Company in England began glass bottle production in 1880. In 1884, Hervey Thatcher, an American inventor from New York, invented a glass milk bottle, called "Thatcher's Common Sense Milk Jar," which was sealed with a waxed paper disk.[53] Later, in 1932, plastic-coated paper milk cartons were introduced commercially.[53]

In 1863, French chemist and biologist Louis Pasteur invented pasteurization, a method of killing harmful bacteria in beverages and food products.[53] He developed this method while on summer vacation in Arbois, to remedy the frequent acidity of the local wines.[54] He found out experimentally that it is sufficient to heat a young wine to only about 50–60 °C (122–140 °F) for a brief time to kill the microbes, and that the wine could be nevertheless properly aged without sacrificing the final quality.[54] In honor of Pasteur, the process became known as "pasteurization". Pasteurization was originally used as a way of preventing wine and beer from souring.[55] Commercial pasteurizing equipment was produced in Germany in the 1880s, and producers adopted the process in Copenhagen and Stockholm by 1885.[56][57]


Continued improvements in the efficiency of milk production led to a worldwide glut of milk by 2016. Russia and China became self-sufficient and stopped importing milk. Canada has tried to restrict milk production by forcing new farmers/increased capacity to "buy in" at C$24,000 per cow. Importing milk is prohibited. The European Union theoretically stopped subsidizing dairy farming in 2015. Direct subsidies were replaced by "environmental incentives" which results in the government buying milk when the price falls to 200 per 1,000 liters (220 imp gal; 260 U.S. gal). The United States has a voluntary insurance program that pays farmers depending upon the price of milk and the cost of feed.[10]


The females of all mammal species can by definition produce milk, but cow's milk dominates commercial production. In 2011, FAO estimates 85% of all milk worldwide was produced from cows.[58] Human milk is not produced or distributed industrially or commercially; however, human milk banks collect donated human breastmilk and redistribute it to infants who may benefit from human milk for various reasons (premature neonates, babies with allergies, metabolic diseases, etc.) but who cannot breastfeed.[59]

In the Western world, cow's milk is produced on an industrial scale and is by far the most commonly consumed form of milk. Commercial dairy farming using automated milking equipment produces the vast majority of milk in developed countries. Dairy cattle such as the Holstein have been bred selectively for increased milk production. About 90% of the dairy cows in the United States and 85% in Great Britain are Holsteins.[33] Other dairy cows in the United States include Ayrshire, Brown Swiss, Guernsey, Jersey and Milking Shorthorn (Dairy Shorthorn).

Other animal-based sources

Other significant sources of milk
Goats (2% of world's milk)
Buffaloes (11%)

Aside from cattle, many kinds of livestock provide milk used by humans for dairy products. These animals include water buffalo, goat, sheep, camel, donkey, horse, reindeer and yak. The first four respectively produced about 11%, 2%, 1.4% and 0.2% of all milk worldwide in 2011.[58]

In Russia and Sweden, small moose dairies also exist.[60]

According to the U.S. National Bison Association, American bison (also called American buffalo) are not milked commercially;[61] however, various sources report cows resulting from cross-breeding bison and domestic cattle are good milk producers, and have been used both during the European settlement of North America[62] and during the development of commercial Beefalo in the 1970s and 1980s.[63]

Swine are almost never milked, even though their milk is similar to cow's milk and perfectly suitable for human consumption. The main reasons for this are that milking a sow's numerous small teats is very cumbersome, and that sows can not store their milk as cows can.[64] A few pig farms do sell pig cheese as a novelty item; these cheeses are exceedingly expensive.[65]

Production worldwide

Top ten cow milk producers
in 2013[66]
Rank Country Production
(metric tons)
1  United States 91,271,058
2  India 60,600,000
3  China 35,310,000
4  Brazil 34,255,236
5  Germany 31,122,000
6  Russia 30,285,969
7  France 23,714,357
8  New Zealand 18,883,000
9  Turkey 16,655,009
10  United Kingdom 13,941,000
Top ten sheep milk producers
in 2013[67]
Rank Country Production
(metric tons)
1  China 1,540,000
2  Turkey 1,101,013
3  Greece 705,000
4  Syria 684,578
5  Romania 632,582
6  Spain 600,568
7  Sudan 540,000
8  Somalia 505,000
9  Iran 470,000
10  Italy 383,837
Top ten goat milk producers
in 2013[68]
Rank Country Production
(metric tons)
1  India 5,000,000
2  Bangladesh 2,616,000
3  Sudan 1,532,000
4  Pakistan 801,000
5  Mali 720,000
6  France 580,694
7  Spain 471,999
8  Turkey 415,743
9  Somalia 400,000
10  Greece 340,000
Top ten buffalo milk producers
in 2013[69]
Rank Country Production
(metric tons)
1  India 70,000,000
2  Pakistan 24,370,000
3  China 3,050,000
4  Egypt 2,614,500
5    Nepal 1,188,433
6  Myanmar 309,000
7  Italy 194,893
8  Sri Lanka 65,000
9  Iran 65,000
10  Turkey 51,947

In 2012, the largest producer of milk and milk products was India followed by the United States of America, China, Pakistan and Brazil.[70] All 28 European Union members together produced 153.8 million tonnes of milk in 2013, the largest by any politico-economic union.[71]

Increasing affluence in developing countries, as well as increased promotion of milk and milk products, has led to a rise in milk consumption in developing countries in recent years. In turn, the opportunities presented by these growing markets have attracted investments by multinational dairy firms. Nevertheless, in many countries production remains on a small scale and presents significant opportunities for diversification of income sources by small farms.[72] Local milk collection centers, where milk is collected and chilled prior to being transferred to urban dairies, are a good example of where farmers have been able to work on a cooperative basis, particularly in countries such as India.[73]

Production yields

FAO reports[58] Israel dairy farms are the most productive in the world, with a yield of 12,546 kilograms (27,659 lb) milk per cow per year. This survey over 2001 and 2007 was conducted by ICAR (International Committee for Animal Recording)[74] across 17 developed countries. The survey found that the average herd size in these developed countries increased from 74 to 99 cows per herd between 2001 and 2007. A dairy farm had an average of 19 cows per herd in Norway, and 337 in New Zealand. Annual milk production in the same period increased from 7,726 to 8,550 kg (17,033 to 18,850 lb) per cow in these developed countries. The lowest average production was in New Zealand at 3,974 kg (8,761 lb) per cow. The milk yield per cow depended on production systems, nutrition of the cows, and only to a minor extent different genetic potential of the animals. What the cow ate made the most impact on the production obtained. New Zealand cows with the lowest yield per year grazed all year, in contrast to Israel with the highest yield where the cows ate in barns with an energy-rich mixed diet.

The milk yield per cow in the United States, the world's largest cow milk producer, was 9,954 kg (21,945 lb) per year in 2010. In contrast, the milk yields per cow in India and China – the second and third largest producers – were respectively 1,154 kg (2,544 lb) and 2,282 kg (5,031 lb) per year.[75]


It was reported in 2007 that with increased worldwide prosperity and the competition of bio-fuel production for feed stocks, both the demand for and the price of milk had substantially increased worldwide. Particularly notable was the rapid increase of consumption of milk in China and the rise of the price of milk in the United States above the government subsidized price.[76] In 2010 the Department of Agriculture predicted farmers would receive an average of $1.35 per U.S. gallon of cow's milk (35 cents per liter), which is down 30 cents per gallon from 2007 and below the break-even point for many cattle farmers.[77]

Environmental impact

Mean greenhouse gas emissions for one glass (200g) of different milks[78]
Milk Types Greenhouse Gas Emissions (kg CO2-Ceq per 200g)
Cow's Milk
Rice Milk
Soy Milk
Oat Milk
Almond Milk
Mean water footprint for one glass (200g) of different milks[78]
Milk Types Water Use (L per 200g)
Cow's Milk
Almond Milk
Rice Milk
Oat Milk
Soy Milk
Mean land use for one glass (200g) of different milks[78]
Milk Types Land Use (m2 per 200g)
Cow's Milk
Oat Milk
Soy Milk
Almond Milk
Rice Milk

The consumption of cow's milk poses numerous threats to the natural environment. Compared to plant milks, cow's milk requires the most land and water,[78] and its production results in the greatest amount of greenhouse gas (GHG) emissions, air pollution, and water pollution.[79] A 2010 UN report, Assessing the Environmental Impacts of Consumption and Production, argued that animal products, including dairy, "in general require more resources and cause higher emissions than plant-based alternatives".[80]:80 It proposed a move away from animal products to reduce environmental damage.[lower-alpha 1][82]

The global water footprint of animal agriculture is 2,422 billion cubic meters of water (one-fourth of the total global water footprint), 19 percent of which is related to dairy cattle.[83] A 2012 study found that 98 percent of milk’s footprint can be traced back to the cows food.[84]

A 2010 Food and Agriculture Organization report found that the global dairy sector contributes to four percent of the total global anthropogenic GHG emissions. This figure includes emissions allotted to milk production, processing and transportation, and the emissions from fattening and slaughtering dairy cows.[85] The same report found that 52 percent of the GHGs produced by dairy cattle is methane, and nitrous oxide makes up for another 27 percent of dairy cattle’s GHG emission. It is estimated that cows produce between 250 and 500 liters of methane a day.[86] Methane has a heat-trapping potential nearly 100 times larger than carbon dioxide, and nitrous oxide has a global warming potential almost 300 times greater than carbon dioxide.[87]

Physical and chemical properties

Milk is an emulsion or colloid of butterfat globules within a water-based fluid that contains dissolved carbohydrates and protein aggregates with minerals.[88] Because it is produced as a food source for the young, all of its contents provide benefits for growth. The principal requirements are energy (lipids, lactose, and protein), biosynthesis of non-essential amino acids supplied by proteins (essential amino acids and amino groups), essential fatty acids, vitamins and inorganic elements, and water.[89]


The pH of milk ranges from 6.4 to 6.8 and it changes over time. Milk from other bovines and non-bovine mammals varies in composition, but has a similar pH.


Initially milk fat is secreted in the form of a fat globule surrounded by a membrane.[90] Each fat globule is composed almost entirely of triacylglycerols and is surrounded by a membrane consisting of complex lipids such as phospholipids, along with proteins. These act as emulsifiers which keep the individual globules from coalescing and protect the contents of these globules from various enzymes in the fluid portion of the milk. Although 97–98% of lipids are triacylglycerols, small amounts of di- and monoacylglycerols, free cholesterol and cholesterol esters, free fatty acids, and phospholipids are also present. Unlike protein and carbohydrates, fat composition in milk varies widely in the composition due to genetic, lactational, and nutritional factor difference between different species.[90]

Like composition, fat globules vary in size from less than 0.2 to about 15 micrometers in diameter between different species. Diameter may also vary between animals within a species and at different times within a milking of a single animal. In unhomogenized cow's milk, the fat globules have an average diameter of two to four micrometers and with homogenization, average around 0.4 micrometers.[90] The fat-soluble vitamins A, D, E, and K along with essential fatty acids such as linoleic and linolenic acid are found within the milk fat portion of the milk.[33]


Normal bovine milk contains 30–35 grams of protein per liter of which about 80% is arranged in casein micelles. Total proteins in milk represent 3.2% of its composition (nutrition table).


The largest structures in the fluid portion of the milk are "casein micelles": aggregates of several thousand protein molecules with superficial resemblance to a surfactant micelle, bonded with the help of nanometer-scale particles of calcium phosphate. Each casein micelle is roughly spherical and about a tenth of a micrometer across. There are four different types of casein proteins: αs1-, αs2-, β-, and κ-caseins. Most of the casein proteins are bound into the micelles. There are several competing theories regarding the precise structure of the micelles, but they share one important feature: the outermost layer consists of strands of one type of protein, k-casein, reaching out from the body of the micelle into the surrounding fluid. These kappa-casein molecules all have a negative electrical charge and therefore repel each other, keeping the micelles separated under normal conditions and in a stable colloidal suspension in the water-based surrounding fluid.[33][91]

Milk contains dozens of other types of proteins beside caseins and including enzymes. These other proteins are more water-soluble than caseins and do not form larger structures. Because the proteins remain suspended in whey remaining when caseins coagulate into curds, they are collectively known as whey proteins. Lactoglobulin is the most common whey protein by a large margin.[33] The ratio of caseins to whey proteins varies greatly between species; for example, it is 82:18 in cows and around 32:68 in humans.[92]

Ratio of caseins to whey proteins in milk of nine mammals[92]
Human29.7:70.3 – 33.7:66.3
Camel73:27 – 76:24
Reindeer80:20 – 83:17

Salts, minerals, and vitamins

Minerals or milk salts, are traditional names for a variety of cations and anions within bovine milk. Calcium, phosphate, magnesium, sodium, potassium, citrate, and chloride are all included as minerals and they typically occur at concentration of 5–40 mM. The milk salts strongly interact with casein, most notably calcium phosphate. It is present in excess and often, much greater excess of solubility of solid calcium phosphate.[89] In addition to calcium, milk is a good source of many other vitamins. Vitamins A, B6, B12, C, D, K, E, thiamine, niacin, biotin, riboflavin, folates, and pantothenic acid are all present in milk.

Calcium phosphate structure

For many years the most accepted theory of the structure of a micelle was that it was composed of spherical casein aggregates, called submicelles, that were held together by calcium phosphate linkages. However, there are two recent models of the casein micelle that refute the distinct micellular structures within the micelle.

The first theory attributed to de Kruif and Holt, proposes that nanoclusters of calcium phosphate and the phosphopeptide fraction of beta-casein are the centerpiece to micellular structure. Specifically in this view, unstructured proteins organize around the calcium phosphate giving rise to their structure and thus no specific structure is formed.

The second theory proposed by Horne, the growth of calcium phosphate nanoclusters begins the process of micelle formation but is limited by binding phosphopeptide loop regions of the caseins. Once bound, protein-protein interactions are formed and polymerization occurs, in which K-casein is used as an end cap, to form micelles with trapped calcium phosphate nanoclusters.

Some sources indicate that the trapped calcium phosphate is in the form of Ca9(PO4)6; whereas, others say it is similar to the structure of the mineral brushite CaHPO4 -2H2O.[93]

Sugars and carbohydrates

Milk contains several different carbohydrate including lactose, glucose, galactose, and other oligosaccharides. The lactose gives milk its sweet taste and contributes approximately 40% of whole cow's milk's calories. Lactose is a disaccharide composite of two simple sugars, glucose and galactose. Bovine milk averages 4.8% anhydrous lactose, which amounts to about 50% of the total solids of skimmed milk. Levels of lactose are dependent upon the type of milk as other carbohydrates can be present at higher concentrations than lactose in milks.[89]

Miscellaneous contents

Other components found in raw cow's milk are living white blood cells, mammary gland cells, various bacteria, and a large number of active enzymes.[33]


Both the fat globules and the smaller casein micelles, which are just large enough to deflect light, contribute to the opaque white color of milk. The fat globules contain some yellow-orange carotene, enough in some breeds (such as Guernsey and Jersey cattle) to impart a golden or "creamy" hue to a glass of milk. The riboflavin in the whey portion of milk has a greenish color, which sometimes can be discerned in skimmed milk or whey products.[33] Fat-free skimmed milk has only the casein micelles to scatter light, and they tend to scatter shorter-wavelength blue light more than they do red, giving skimmed milk a bluish tint.[91]


In most Western countries, centralized dairy facilities process milk and products obtained from milk, such as cream, butter, and cheese. In the U.S., these dairies usually are local companies, while in the Southern Hemisphere facilities may be run by large multi-national corporations such as Fonterra.


Pasteurization is used to kill harmful pathogenic bacteria by heating the milk for a short time and then immediately cooling it. Types of pasteurized milk include full cream, reduced fat, skim milk, calcium enriched, flavored, and UHT.[94] The standard high temperature short time (HTST) process of 72 °C for 15 seconds completely kills pathogenic bacteria in milk,[95] rendering it safe to drink for up to three weeks if continually refrigerated.[96] Dairies print best before dates on each container, after which stores remove any unsold milk from their shelves.

A side effect of the heating of pasteurization is that some vitamin and mineral content is lost. Soluble calcium and phosphorus decrease by 5%, thiamin and vitamin B12 by 10%, and vitamin C by 20%.[97] Because losses are small in comparison to the large amount of the two B-vitamins present, milk continues to provide significant amounts of thiamin and vitamin B12. The loss of vitamin C is not nutritionally significant, as milk is not an important dietary source of vitamin C.


Microfiltration is a process that partially replaces pasteurization and produces milk with fewer microorganisms and longer shelf life without a change in the taste of the milk. In this process, cream is separated from the skimmed milk and is pasteurized in the usual way, but the skimmed milk is forced through ceramic microfilters that trap 99.9% of microorganisms in the milk[98] (as compared to 99.999% killing of microorganisms in standard HTST pasteurization).[99] The skimmed milk then is recombined with the pasteurized cream to reconstitute the original milk composition.

Ultrafiltration uses finer filters than microfiltration, which allow lactose and water to pass through while retaining fats, calcium and protein.[100] As with microfiltration, the fat may be removed before filtration and added back in afterwards.[101] Ultrafiltered milk is used is cheesemaking, since it has reduced volume for a given protein content, and is sold directly to consumers as a higher protein, lower sugar content, and creamier alternative to regular milk.[102]

Creaming and homogenization

Upon standing for 12 to 24 hours, fresh milk has a tendency to separate into a high-fat cream layer on top of a larger, low-fat milk layer. The cream often is sold as a separate product with its own uses. Today the separation of the cream from the milk usually is accomplished rapidly in centrifugal cream separators. The fat globules rise to the top of a container of milk because fat is less dense than water.[33]

The smaller the globules, the more other molecular-level forces prevent this from happening. The cream rises in cow's milk much more quickly than a simple model would predict: rather than isolated globules, the fat in the milk tends to form into clusters containing about a million globules, held together by a number of minor whey proteins.[33] These clusters rise faster than individual globules can. The fat globules in milk from goats, sheep, and water buffalo do not form clusters as readily and are smaller to begin with, resulting in a slower separation of cream from these milks.[33]

Milk often is homogenized, a treatment that prevents a cream layer from separating out of the milk. The milk is pumped at high pressures through very narrow tubes, breaking up the fat globules through turbulence and cavitation.[103] A greater number of smaller particles possess more total surface area than a smaller number of larger ones, and the original fat globule membranes cannot completely cover them. Casein micelles are attracted to the newly exposed fat surfaces.

Nearly one-third of the micelles in the milk end up participating in this new membrane structure. The casein weighs down the globules and interferes with the clustering that accelerated separation. The exposed fat globules are vulnerable to certain enzymes present in milk, which could break down the fats and produce rancid flavors. To prevent this, the enzymes are inactivated by pasteurizing the milk immediately before or during homogenization.

Homogenized milk tastes blander but feels creamier in the mouth than unhomogenized. It is whiter and more resistant to developing off flavors.[33] Creamline (or cream-top) milk is unhomogenized. It may or may not have been pasteurized. Milk that has undergone high-pressure homogenization, sometimes labeled as "ultra-homogenized", has a longer shelf life than milk that has undergone ordinary homogenization at lower pressures.[104]


Ultra Heat Treatment (UHT), is a type of milk processing where all bacteria are destroyed with high heat to extend its shelf life for up to 6 months, as long as the package is not opened. Milk is firstly homogenized and then is heated to 138 degrees Celsius for 1–3 seconds. The milk is immediately cooled down and packed into a sterile container. As a result of this treatment, all the pathogenic bacteria within the milk are destroyed, unlike when the milk is just pasteurised. The milk will now keep for up for 6 months if unopened. UHT milk does not need to be refrigerated until the package is opened, which makes it easier to ship and store. But in this process there is a loss of vitamin B1 and vitamin C and there is also a slight change in the taste of the milk.[105]

Nutrition and health

The composition of milk differs widely among species. Factors such as the type of protein; the proportion of protein, fat, and sugar; the levels of various vitamins and minerals; and the size of the butterfat globules, and the strength of the curd are among those that may vary.[35] For example:

  • Human milk contains, on average, 1.1% protein, 4.2% fat, 7.0% lactose (a sugar), and supplies 72 kcal of energy per 100 grams.
  • Cow's milk contains, on average, 3.4% protein, 3.6% fat, and 4.6% lactose, 0.7% minerals[106] and supplies 66 kcal of energy per 100 grams. See also Nutritional value further on

Donkey and horse milk have the lowest fat content, while the milk of seals and whales may contain more than 50% fat.[107]

Milk composition analysis, per 100 grams
Constituents Unit Cow Goat Sheep Water
Water g 87.8 88.9 83.0 81.1
Protein g 3.2 3.1 5.4 4.5
Fat g 3.9 3.5 6.0 8.0
----Saturated fatty acids g 2.4 2.3 3.8 4.2
----Monounsaturated fatty acids g 1.1 0.8 1.5 1.7
----Polyunsaturated fatty acids g 0.1 0.1 0.3 0.2
Carbohydrate (i.e. the sugar form of lactose) g 4.8 4.4 5.1 4.9
Cholesterol mg 14 10 11 8
Calcium mg 120 100 170 195
Energy kcal 66 60 95 110
kJ 275 253 396 463
Nutritional content of cow, soy, almond and oat milks
Cow milk (whole, vitamin D added)[108] Soy milk (unsweetened; calcium, vitamins A and D added)[109] Almond milk (unsweetened)[110] Oat milk (unsweetened)[111]
Calories (cup, 243g) 149 80 39 120
Protein (g) 7.69 6.95 1.55 3
Fat (g) 7.93 3.91 2.88 5
Saturated fat (g) 4.55 0.5 0 0.5
Carbohydrate (g) 11.71 4.23 1.52 16
Fiber (g) 0 1.2 0 2
Sugars (g) 12.32 1 0 7
Calcium (mg) 276 301 516 350
Potassium (mg) 322 292 176 390
Sodium (mg) 105 90 186 140
Vitamin B12 (µg) 1.10 2.70 0 1.2
Vitamin A (IU) 395 503 372 267
Vitamin D (IU) 124 119 110 144
Cholesterol (mg) 24 0 0 0

Cow's milk

These compositions vary by breed, animal, and point in the lactation period.

Milk fat percentages
Cow breed Approximate percentage
Jersey 5.2
Zebu 4.7
Brown Swiss 4.0
Holstein-Friesian 3.6

The protein range for these four breeds is 3.3% to 3.9%, while the lactose range is 4.7% to 4.9%.[33]

Milk fat percentages may be manipulated by dairy farmers' stock diet formulation strategies. Mastitis infection can cause fat levels to decline.[112]

Nutritional value

Cow's milk (whole)
Nutritional value per 100 g (3.5 oz)
Energy252 kJ (60 kcal)
5.26 g
Sugars 5.26 g
5.26 g
3.25 g
Saturated1.865 g
Monounsaturated0.812 g
Polyunsaturated0.195 g
3.22 g
Tryptophan0.075 g
Threonine0.143 g
Isoleucine0.165 g
Leucine0.265 g
Lysine0.140 g
Methionine0.075 g
Cystine0.017 g
Phenylalanine0.147 g
Tyrosine0.152 g
Valine0.192 g
Arginine0.075 g
Histidine0.075 g
Alanine0.103 g
Aspartic acid0.237 g
Glutamic acid0.648 g
Glycine0.075 g
Proline0.342 g
Serine0.107 g
VitaminsQuantity %DV
Vitamin A equiv.
46 μg
Thiamine (B1)
0.044 mg
Riboflavin (B2)
0.183 mg
Vitamin B12
0.45 μg
14.3 mg
Vitamin D
2 IU
MineralsQuantity %DV
113 mg
10 mg
132 mg
43 mg
Other constituentsQuantity
Water88.32 g

100 mL corresponds to 103 g.[117]
Percentages are roughly approximated using US recommendations for adults.
Source: USDA Nutrient Database

Processed cow's milk was formulated to contain differing amounts of fat during the 1950s. One cup (250 mL) of 2%-fat cow's milk contains 285 mg of calcium, which represents 22% to 29% of the daily recommended intake (DRI) of calcium for an adult. Depending on its age, milk contains 8 grams of protein, and a number of other nutrients (either naturally or through fortification) including:

The U.S. federal government document Dietary Guidelines for Americans, 2010[118] recommends consumption of three glasses of fat-free or low-fat milk for adults and children 9 and older (less for younger children) per day. This recommendation is disputed by some health researchers who call for more study of the issue, given that there are other sources for calcium and vitamin D. The researchers also claim that the recommendations have been unduly influenced by the American dairy industry,[119] and that whole milk may be better for health due to its increased ability to satiate hunger.

Medical research

A 2008 review found evidence suggesting that consumption of milk is effective at promoting muscle growth.[120] Some studies have suggested that conjugated linoleic acid, which can be found in dairy products, is an effective supplement for reducing body fat.[121]

Calcium absorption

The amount of calcium from milk that is absorbed by the human body is disputed.[122] Calcium from dairy products has a greater bioavailability than calcium from certain vegetables, such as spinach, that contain high levels of calcium-chelating agents,[123] but a similar or lesser bioavailability than calcium from low-oxalate vegetables such as kale, broccoli, or other vegetables in the genus Brassica.[124][125]

Milk as a calcium source has been questioned in media, but scientific research is lacking to support the hypothesis of acidosis induced by milk. The hypothesis in question being that acidosis would lead to leaching of calcium storages in bones to neutralize pH levels (also known as acid-ash hypothesis). Research has found no link between metabolic acidosis and consumption of milk.[126][127][128]

Milk and bone strength

A 2011 meta-analysis examining whether milk consumption might protect against hip fracture in middle-aged and older adults found no association between drinking milk and lower rates of fractures.[129]

Lactose intolerance

Lactose, the disaccharide sugar component of all milk, must be cleaved in the small intestine by the enzyme lactase, in order for its constituents, galactose and glucose, to be absorbed. Lactose intolerance is a condition in which people have symptoms due to not enough of the enzyme lactase in the small intestines.[130] Those affected vary in the amount of lactose they can tolerate before symptoms develop. These may include abdominal pain, bloating, diarrhea, gas, and nausea. Severity depends on the amount a person eats or drinks.[131] Those affected are usually able to drink at least one cup of milk without developing significant symptoms, with greater amounts tolerated if drunk with a meal or throughout the day.[131][132]

Lactose intolerance does not cause damage to the gastrointestinal tract.[133] There are four types: primary, secondary, developmental, and congenital. Primary lactose intolerance is when the amount of lactase decline as people age. Secondary lactose intolerance is due to injury to the small intestine such as from infection, celiac disease, inflammatory bowel disease, or other diseases.[131][134] Developmental lactose intolerance may occur in premature babies and usually improves over a short period of time. Congenital lactose intolerance is an extremely rare genetic disorder in which little or no lactase is made from birth.[131] When lactose intolerance is due to secondary lactase deficiency, treatment of the underlying disease allows lactase activity to return to normal levels.[135] Lactose intolerance is different from a milk allergy.[131]

The number of people with lactose intolerance is unknown.[136] The number of adults who cannot produce enough lactase in their small intestine varies markedly in different populations. Since lactase's only function is the digestion of lactose in milk, in most mammal species the activity of the enzyme is dramatically reduced after weaning.[137] Within most human populations, however, some individuals have developed, by natural evolution, the ability to maintain throughout their life high levels of lactose in their small intestine,[138] as an adaptation to the consumption of nonhuman milk and dairy products beyond infancy. This ability, which allows them to digest lactose into adulthood, is called lactase persistence. The distribution of people with lactase persistence is not homogeneous in the world. For instance, they are more than 90% in North Europe, and as low as 5% in parts of Asia and Africa.[130]

Possible harms

Milk and dairy products have the potential for causing serious infection in newborn infants. Unpasteurized milk and cheeses can promote the growth of Listeria bacteria. Listeria monocytogenes can also cause serious infection in an infant and pregnant woman and can be transmitted to her infant in utero or after birth. The infection has the potential of seriously harming or even causing the death of a preterm infant, an infant of low or very low birth weight, or an infant with a congenital defect of the immune system. The presence of this pathogen can sometimes be determined by the symptoms that appear as a gastrointestinal illness in the mother. The mother can also acquire infection from ingesting food that contains other animal products such as hot dogs, delicatessen meats, and cheese.[139]

Cow's milk allergy (CMA) is an immunologically mediated adverse reaction, rarely fatal, to one or more cow's milk proteins.[140]

Flavored milk in U.S. schools

Milk must be offered at every meal if a United States school district wishes to get reimbursement from the federal government.[141] A quarter of the largest school districts in the U.S. offer rice or soy milk and almost 17% of all U.S. school districts offer lactose-free milk. Of the milk served in U.S. school cafeterias, 71% is flavored, causing some school districts to propose a ban because flavored milk has added sugars. (Though some flavored milk products use artificial sweeteners instead.) The Boulder, Colorado, school district banned flavored milk in 2009 and instead installed a dispenser that keeps the milk colder.[141]

Evolution of lactation

The mammary gland is thought to have derived from apocrine skin glands.[142] It has been suggested that the original function of lactation (milk production) was keeping eggs moist. Much of the argument is based on monotremes (egg-laying mammals).[142][143][144] The original adaptive significance of milk secretions may have been nutrition[145] or immunological protection.[146][147] This secretion gradually became more copious and accrued nutritional complexity over evolutionary time.[142]

Tritylodontid cynodonts seem to have displayed lactation, based on their dental replacement patterns.[148]

Bovine growth hormone supplementation

Since November 1993, recombinant bovine somatotropin (rbST), also called rBGH, has been sold to dairy farmers with FDA approval. Cows produce bovine growth hormone naturally, but some producers administer an additional recombinant version of BGH which is produced through genetically engineered E. coli to increase milk production. Bovine growth hormone also stimulates liver production of insulin-like growth factor 1 (IGF1). The U.S. Food and Drug Administration,[149] the National Institutes of Health[150] and the World Health Organization[151] have reported that both of these compounds are safe for human consumption at the amounts present.

Milk from cows given rBST may be sold in the United States, and the FDA stated that no significant difference has been shown between milk derived from rBST-treated and that from non-rBST-treated cows.[152] Milk that advertises that it comes from cows not treated with rBST, is required to state this finding on its label.

Cows receiving rBGH supplements may more frequently contract an udder infection known as mastitis.[153] Problems with mastitis have led to Canada, Australia, New Zealand, and Japan banning milk from rBST treated cows. Mastitis, among other diseases, may be responsible for the fact that levels of white blood cells in milk vary naturally.[154][155]

rBGH is also banned in the European Union, for reasons of animal welfare.[156]


Vegans and some other vegetarians do not consume milk for reasons mostly related to animal rights and environmental concerns. They may object to features of dairy farming including the necessity of keeping dairy cows pregnant, the killing of almost all the male offspring of dairy cows (either by disposal soon after birth, for veal production, or for beef), the routine separation of mother and calf soon after birth, other perceived inhumane treatment of dairy cattle, and culling of cows after their productive lives.[157]

It is often argued that it is unnatural for humans to drink milk from cows (or other animals) because mammals normally do not drink milk beyond the weaning period, nor do they drink milk from another species.[158]

Some have criticized the American government's promotion of milk consumption. Their main concern is the financial interest that the American government has taken in the dairy industry, promoting milk as the best source of calcium. All United States schools that are a part of the federally funded National School Lunch Act are required by the federal government to provide milk for all students. The Office of Dietary Supplements recommends that healthy adults between ages 19 and 50 get about 1,000 mg of calcium per day.[159]

Milk production is also resource intensive. On a global weighted average, for the production of a given volume of milk, a thousand times as much water has to be used.[160]

Varieties and brands

Milk products are sold in a number of varieties based on types/degrees of:

  • additives (e.g. vitamins, flavorings)
  • age (e.g. cheddar, old cheddar)
  • coagulation (e.g. cottage cheese)
  • farming method (e.g. organic, grass-fed)
  • fat content (e.g. half and half, 3% fat milk, 2% milk, 1% milk, skim milk)
  • fermentation (e.g. buttermilk)
  • flavoring (e.g. chocolate and strawberry)
  • homogenization (e.g. cream top)
  • packaging (e.g. bottle, carton, bag)
  • pasteurization (e.g. raw milk, pasteurized milk)
  • reduction or elimination of lactose
  • species (e.g. cow, goat, sheep)
  • sweetening (e.g., chocolate and strawberry milk)
  • water content (e.g. dry milk powder, condensed milk, ultrafiltered milk)

Milk preserved by the UHT process does not need to be refrigerated before opening and has a much longer shelf life (six months) than milk in ordinary packaging. It is typically sold unrefrigerated in the UK, U.S., Europe, Latin America, and Australia.

Reduction or elimination of lactose

Lactose-free milk can be produced by passing milk over lactase enzyme bound to an inert carrier. Once the molecule is cleaved, there are no lactose ill effects. Forms are available with reduced amounts of lactose (typically 30% of normal), and alternatively with nearly 0%. The only noticeable difference from regular milk is a slightly sweeter taste due to the generation of glucose by lactose cleavage. It does not, however, contain more glucose, and is nutritionally identical to regular milk.

Finland, where approximately 17% of the Finnish-speaking population has hypolactasia,[161] has had "HYLA" (acronym for hydrolysed lactose) products available for many years. Lactose of low-lactose level cow's milk products, ranging from ice cream to cheese, is enzymatically hydrolysed into glucose and galactose. The ultra-pasteurization process, combined with aseptic packaging, ensures a long shelf life. In 2001, Valio launched a lactose-free milk drink that is not sweet like HYLA milk but has the fresh taste of ordinary milk. Valio patented the chromatographic separation method to remove lactose. Valio also markets these products in Sweden, Estonia, Belgium,[162] and the United States, where the company says ultrafiltration is used.[163]

In the UK, where an estimated 4.7% of the population are affected by lactose intolerance,[164] Lactofree produces milk, cheese, and yogurt products that contain only 0.03% lactose.

To aid digestion in those with lactose intolerance, milk with added bacterial cultures such as Lactobacillus acidophilus ("acidophilus milk") and bifidobacteria ("a/B milk") is available in some areas.[165] Another milk with Lactococcus lactis bacteria cultures ("cultured buttermilk") often is used in cooking to replace the traditional use of naturally soured milk, which has become rare due to the ubiquity of pasteurization, which also kills the naturally occurring Lactococcus bacteria.[166]

Lactose-free and lactose-reduced milk can also be produced via ultra filtration, which removes smaller molecules such as lactose and water while leaving calcium and proteins behind. Milk produced via these methods has a lower sugar content than regular milk.[100]

Additives and flavoring

In areas where the cattle (and often the people) live indoors, commercially sold milk commonly has vitamin D added to it to make up for lack of exposure to UVB radiation.

Reduced-fat milks often have added vitamin A palmitate to compensate for the loss of the vitamin during fat removal; in the United States this results in reduced fat milks having a higher vitamin A content than whole milk.[167]

Milk often has flavoring added to it for better taste or as a means of improving sales. Chocolate milk has been sold for many years and has been followed more recently by strawberry milk and others. Some nutritionists have criticized flavored milk for adding sugar, usually in the form of high-fructose corn syrup, to the diets of children who are already commonly obese in the U.S.[168]


Due to the short shelf life of normal milk, it used to be delivered to households daily in many countries; however, improved refrigeration at home, changing food shopping patterns because of supermarkets, and the higher cost of home delivery mean that daily deliveries by a milkman are no longer available in most countries.

Australia and New Zealand

In Australia and New Zealand, prior to metrication, milk was generally distributed in 1 pint (568 mL) glass bottles. In Australia and Ireland there was a government funded "free milk for school children" program, and milk was distributed at morning recess in 1/3 pint bottles. With the conversion to metric measures, the milk industry were concerned that the replacement of the pint bottles with 500 mL bottles would result in a 13.6% drop in milk consumption; hence, all pint bottles were recalled and replaced by 600 mL bottles. With time, due to the steadily increasing cost of collecting, transporting, storing and cleaning glass bottles, they were replaced by cardboard cartons. A number of designs were used, including a tetrahedron which could be close-packed without waste space, and could not be knocked over accidentally. (slogan: No more crying over spilt milk.) However, the industry eventually settled on a design similar to that used in the United States.[169]

Milk is now available in a variety of sizes in paperboard milk cartons (250 mL, 375 mL, 600 mL, 1 liter and 1.5 liters) and plastic bottles (1, 2 and 3 liters). A significant addition to the marketplace has been "long-life" milk (UHT), generally available in 1 and 2 liter rectangular cardboard cartons. In urban and suburban areas where there is sufficient demand, home delivery is still available, though in suburban areas this is often 3 times per week rather than daily. Another significant and popular addition to the marketplace has been flavored milks – for example, as mentioned above, Farmers Union Iced Coffee outsells Coca-Cola in South Australia.


In rural India, milk is home delivered, daily, by local milkmen carrying bulk quantities in a metal container, usually on a bicycle. In other parts of metropolitan India, milk is usually bought or delivered in plastic bags or cartons via shops or supermarkets.

The current milk chain flow in India is from milk producer to milk collection agent. Then it is transported to a milk chilling center and bulk transported to the processing plant, then to the sales agent and finally to the consumer.

A 2011 survey by the Food Safety and Standards Authority of India found that nearly 70% of samples had not conformed to the standards set for milk. The study found that due to lack of hygiene and sanitation in milk handling and packaging, detergents (used during cleaning operations) were not washed properly and found their way into the milk. About 8% of samples in the survey were found to have detergents, which are hazardous to health.[170]


In Pakistan, milk is supplied in jugs. Milk has been a staple food, especially among the pastoral tribes in this country.

United Kingdom

Since the late 1990s, milk-buying patterns have changed drastically in the UK. The classic milkman, who travels his local milk round (route) using a milk float (often battery powered) during the early hours and delivers milk in 1 pint glass bottles with aluminium foil tops directly to households, has almost disappeared. Two of the main reasons for the decline of UK home deliveries by milkmen are household refrigerators (which lessen the need for daily milk deliveries) and private car usage (which has increased supermarket shopping). Another factor is that it is cheaper to purchase milk from a supermarket than from home delivery. In 1996, more than 2.5 billion liters of milk were still being delivered by milkmen, but by 2006 only 637 million liters (13% of milk consumed) was delivered by some 9,500 milkmen.[171] By 2010, the estimated number of milkmen had dropped to 6,000.[172] Assuming that delivery per milkman is the same as it was in 2006, this means milkmen deliveries now only account for 6–7% of all milk consumed by UK households (6.7 billion liters in 2008/2009).[173]

Almost 95% of all milk in the UK is thus sold in shops today, most of it in plastic bottles of various sizes, but some also in milk cartons. Milk is hardly ever sold in glass bottles in UK shops.

United States

In the United States, glass milk bottles have been replaced mostly with milk cartons and plastic jugs. Gallons of milk are almost always sold in jugs, while half gallons and quarts may be found in both paper cartons and plastic jugs, and smaller sizes are almost always in cartons.

The "half pint" (237 mL, 512 imp pt) milk carton is the traditional unit as a component of school lunches, though some companies have replaced that unit size with a plastic bottle, which is also available at retail in 6- and 12-pack size.


Glass milk bottles are now rare. Most people purchase milk in bags, plastic bottles, or plastic-coated paper cartons. Ultraviolet (UV) light from fluorescent lighting can alter the flavor of milk, so many companies that once distributed milk in transparent or highly translucent containers are now using thicker materials that block the UV light. Milk comes in a variety of containers with local variants:

Commonly sold in 1 liter bags and cardboard boxes. The bag is then placed in a plastic jug and the corner cut off before the milk is poured.
Australia and New Zealand
Distributed in a variety of sizes, most commonly in aseptic cartons for up to 1.5 liters, and plastic screw-top bottles beyond that with the following volumes; 1.1 L, 2 L, and 3 L. 1 liter milk bags are starting to appear in supermarkets, but have not yet proved popular. Most UHT-milk is packed in 1 or 2 liter paper containers with a sealed plastic spout.[169]
Used to be sold in cooled 1 liter bags, just like in South Africa. Today the most common form is 1 liter aseptic cartons containing UHT skimmed, semi-skimmed or whole milk, although the plastic bags are still in use for pasteurized milk. Higher grades of pasteurized milk can be found in cartons or plastic bottles. Sizes other than 1 liter are rare.
1.33 liter plastic bags (sold as 4 liters in 3 bags) are widely available in some areas (especially the Maritimes, Ontario and Quebec), although the 4 liter plastic jug has supplanted them in western Canada. Other common packaging sizes are 2 liter, 1 liter, 500 mL, and 250 mL cartons, as well as 4 liter, 1 liter, 250 mL aseptic cartons and 500 mL plastic jugs.
Distributed most commonly in aseptic cartons for up to 1 liter, but smaller, snack-sized cartons are also popular. The most common flavors, besides the natural presentation, are chocolate, strawberry and vanilla.
Sweetened milk is a drink popular with students of all ages and is often sold in small plastic bags complete with straw. Adults not wishing to drink at a banquet often drink milk served from cartons or milk tea.
Sells milk in 1 liter plastic bags.
Croatia, Bosnia and Herzegovina, Serbia, Montenegro
UHT milk (trajno mlijeko/trajno mleko/трајно млеко) is sold in 500 mL and 1 L (sometimes also 200 mL) aseptic cartons. Non-UHT pasteurized milk (svježe mlijeko/sveže mleko/свеже млеко) is most commonly sold in 1 L and 1.5 L PET bottles, though in Serbia one can still find milk in plastic bags.
Commonly sold in 1 L bags or 0.33 L, 0.5 L, 1 L or 1.5 L cartons.
Parts of Europe
Sizes of 500 mL, 1 liter (the most common), 1.5 liters, 2 liters and 3 liters are commonplace.
Commonly sold in 1 L or 1.5 L cartons, in some places also in 2 dl and 5 dl cartons.
Commonly sold in 1-liter cartons. Sale in 1-liter plastic bags (common in the 1980s) now rare.
Hong Kong
Milk is sold in glass bottles (220 mL), cartons (236 mL and 1 L), plastic jugs (2 liters) and aseptic cartons (250 mL).
Commonly sold in 500 mL plastic bags and in bottles in some parts like in west. It is still customary to serve the milk boiled, despite pasteurization. Milk is often buffalo milk. Flavored milk is sold in most convenience stores in waxed cardboard containers. Convenience stores also sell many varieties of milk (such as flavored and ultra-pasteurized) in different sizes, usually in aseptic cartons.
Usually sold in 1 liter cartons, but smaller, snack-sized cartons are available.
Non-UHT milk is most commonly sold in 1 liter waxed cardboard boxes and 1 liter plastic bags. It may also be found in 1.5 L and 2 L waxed cardboard boxes, 2 L plastic jugs and 1 L plastic bottles. UHT milk is available in 1 liter (and less commonly also in 0.5 L) carton "bricks".
Commonly sold in 1 liter waxed paperboard cartons. In most city centers there is also home delivery of milk in glass jugs. As seen in China, sweetened and flavored milk drinks are commonly seen in vending machines.
Milk in Kenya is mostly sold in plastic-coated aseptic paper cartons supplied in 300 mL, 500 mL or 1 liter volumes. In rural areas, milk is stored in plastic bottles or gourds.[174][175] The standard unit of measuring milk quantity in Kenya is a liter.
Milk is supplied in 500 mL plastic bags and carried in jugs from rural to cities for selling
Milk is supplied in 1000 mL plastic bottles and delivered from factories to cities for selling.
UHT milk is mostly sold in aseptic cartons (500 mL, 1 L, 2 L), and non-UHT in 1 L plastic bags or plastic bottles. Milk, UHT is commonly boiled, despite being pasteurized.
South Africa
Commonly sold in 1 liter bags. The bag is then placed in a plastic jug and the corner cut off before the milk is poured.
South Korea
Sold in cartons (180 mL, 200 mL, 500 mL 900 mL, 1 L, 1.8 L, 2.3 L), plastic jugs (1 L and 1.8 L), aseptic cartons (180 mL and 200 mL) and plastic bags (1 L).
Commonly sold in 0.3 L, 1 L or 1.5 L cartons and sometimes as plastic or glass milk bottles.
Commonly sold in 500 mL or 1L cartons or special plastic bottles. UHT milk is more popular. Milkmen also serve in smaller towns and villages.
United Kingdom
Most stores stock imperial sizes: 1 pint (568 mL), 2 pints (1.136 L), 4 pints (2.273 L), 6 pints (3.408 L) or a combination including both metric and imperial sizes. Glass milk bottles delivered to the doorstep by the milkman are typically pint-sized and are returned empty by the householder for repeated reuse. Milk is sold at supermarkets in either aseptic cartons or HDPE bottles. Supermarkets have also now begun to introduce milk in bags, to be poured from a proprietary jug and nozzle.
United States
Commonly sold in gallon (3.78 L), half-gallon (1.89 L) and quart (0.94 L) containers of natural-colored HDPE resin, or, for sizes less than one gallon, cartons of waxed paperboard. Bottles made of opaque PET are also becoming commonplace for smaller, particularly metric, sizes such as one liter. The U.S. single-serving size is usually the half-pint (about 240 mL). Less frequently, dairies deliver milk directly to consumers, from coolers filled with glass bottles which are typically half-gallon sized and returned for reuse. Some convenience store chains in the United States (such as Kwik Trip in the Midwest) sell milk in half-gallon bags, while another rectangular cube gallon container design used for easy stacking in shipping and displaying is used by warehouse clubs such as Costco and Sam's Club, along with some Wal-Mart stores.[176]
Pasteurized milk is commonly sold in 1 liter bags and ultra-pasteurized milk is sold in cardboard boxes called Tetra Briks. Non-pasteurized milk is forbidden. Until the 1960s no treatment was applied; milk was sold in bottles. As of 2017, plastic jugs used for pouring the bags, or "sachets", are in common use.

Practically everywhere, condensed milk and evaporated milk are distributed in metal cans, 250 and 125 mL paper containers and 100 and 200 mL squeeze tubes, and powdered milk (skim and whole) is distributed in boxes or bags.

Spoilage and fermented milk products

When raw milk is left standing for a while, it turns "sour". This is the result of fermentation, where lactic acid bacteria ferment the lactose in the milk into lactic acid. Prolonged fermentation may render the milk unpleasant to consume. This fermentation process is exploited by the introduction of bacterial cultures (e.g. Lactobacilli sp., Streptococcus sp., Leuconostoc sp., etc.) to produce a variety of fermented milk products. The reduced pH from lactic acid accumulation denatures proteins and causes the milk to undergo a variety of different transformations in appearance and texture, ranging from an aggregate to smooth consistency. Some of these products include sour cream, yogurt, cheese, buttermilk, viili, kefir, and kumis. See Dairy product for more information.

Pasteurization of cow's milk initially destroys any potential pathogens and increases the shelf life,[177][178] but eventually results in spoilage that makes it unsuitable for consumption. This causes it to assume an unpleasant odor, and the milk is deemed non-consumable due to unpleasant taste and an increased risk of food poisoning. In raw milk, the presence of lactic acid-producing bacteria, under suitable conditions, ferments the lactose present to lactic acid. The increasing acidity in turn prevents the growth of other organisms, or slows their growth significantly. During pasteurization, however, these lactic acid bacteria are mostly destroyed.

In order to prevent spoilage, milk can be kept refrigerated and stored between 1 and 4 °C (34 and 39 °F) in bulk tanks. Most milk is pasteurized by heating briefly and then refrigerated to allow transport from factory farms to local markets. The spoilage of milk can be forestalled by using ultra-high temperature (UHT) treatment. Milk so treated can be stored unrefrigerated for several months until opened but has a characteristic "cooked" taste. Condensed milk, made by removing most of the water, can be stored in cans for many years, unrefrigerated, as can evaporated milk. The most durable form of milk is powdered milk, which is produced from milk by removing almost all water. The moisture content is usually less than 5% in both drum- and spray-dried powdered milk.

Freezing of milk can cause fat globule aggregation upon thawing, resulting in milky layers and butterfat lumps. These can be dispersed again by warming and stirring the milk.[179] It can change the taste by destruction of milk-fat globule membranes, releasing oxidized flavors.[179]

Use in other food products

Milk is used to make yogurt, cheese, ice milk, pudding, hot chocolate and french toast. Milk is often added to dry breakfast cereal, porridge and granola. Milk is often served in coffee and tea. Steamed milk is used to prepare espresso-based drinks such as cafe latte.

Language and culture

The importance of milk in human culture is attested to by the numerous expressions embedded in our languages, for example, "the milk of human kindness", the expression "there's no use crying over spilt milk" (which means don't "be unhappy about what cannot be undone"), "don't milk the ram" (this means "to do or attempt something futile") and "Why buy a cow when you can get milk for free?" (which means "why pay for something that you can get for free otherwise").[180]

In Greek mythology, the Milky Way was formed after the trickster god Hermes suckled the infant Heracles at the breast of Hera, the queen of the gods, while she was asleep.[181][182] When Hera awoke, she tore Heracles away from her breast and splattered her breast milk across the heavens.[181][182] In another version of the story, Athena, the patron goddess of heroes, tricked Hera into suckling Heracles voluntarily,[181][182] but he bit her nipple so hard that she flung him away, spraying milk everywhere.[181][182]

In many African and Asian countries, butter is traditionally made from fermented milk rather than cream. It can take several hours of churning to produce workable butter grains from fermented milk.[183]

Holy books have also mentioned milk. The Bible contains references to the "Land of Milk and Honey." In the Qur'an, there is a request to wonder on milk as follows: "And surely in the livestock there is a lesson for you, We give you to drink of that which is in their bellies from the midst of digested food and blood, pure milk palatable for the drinkers" (16-The Honeybee, 66). The Ramadan fast is traditionally broken with a glass of milk and dates.

Abhisheka is conducted by Hindu and Jain priests, by pouring libations on the idol of a deity being worshipped, amidst the chanting of mantras. Usually offerings such as milk, yogurt, ghee, honey may be poured among other offerings depending on the type of abhishekam being performed.

A milksop is an "effeminate spiritless man," an expression which is attested to in the late 14th century.[12] Milk toast is a dish consisting of milk and toast. Its soft blandness served as inspiration for the name of the timid and ineffectual comic strip character Caspar Milquetoast, drawn by H. T. Webster from 1924 to 1952.[184] Thus, the term "milquetoast" entered the language as the label for a timid, shrinking, apologetic person. Milk toast also appeared in Disney's Follow Me Boys as an undesirable breakfast for the aging main character Lem Siddons.

To "milk" someone, in the vernacular of many English-speaking countries, is to take advantage of the person, by analogy to the way a farmer "milks" a cow and takes its milk. The word "milk" has had many slang meanings over time. In the 19th century, milk was used to describe a cheap and very poisonous alcoholic drink made from methylated spirits (methanol) mixed with water. The word was also used to mean defraud, to be idle, to intercept telegrams addressed to someone else, and a weakling or "milksop." In the mid-1930s, the word was used in Australia meaning to siphon gas from a car.[185]

Other uses

Besides serving as a beverage or source of food, milk has been described as used by farmers and gardeners as an organic fungicide and fertilizer,[186][187][188] however, its effectiveness is debated. Diluted milk solutions have been demonstrated to provide an effective method of preventing powdery mildew on grape vines, while showing it is unlikely to harm the plant.[189][190]

See also


  1. United Nations Environment Programme (2010): "Impacts from agriculture are expected to increase substantially due to population growth, increasing consumption of animal products. Unlike fossil fuels, it is difficult to look for alternatives: people have to eat. A substantial reduction of impacts would only be possible with a substantial worldwide diet change, away from animal products."[81]:82


  1. Pehrsson, P.R.; Haytowitz, D.B.; Holden, J.M.; Perry, C.R.; Beckler, D.G. (2000). "USDA's National Food and Nutrient Analysis Program: Food Sampling" (PDF). Journal of Food Composition and Analysis. 13 (4): 379–89. doi:10.1006/jfca.1999.0867. Archived from the original (PDF) on April 7, 2003.
  2. Van Esterik, Penny (1995). "The Politics of Breastfeeding". In Stuart-Macadam, Patricia; Dettwyler, Katherine Ann (eds.). Breastfeeding: Biocultural Perspectives. Aldine. ISBN 978-0-202-01192-9.
  3. Radbill, Samuel X. (1976). "The Role of Animals in Infant Feeding". In Hand, Wayland D (ed.). American Folk Medicine: A Symposium. University of California Press. ISBN 978-0-520-04093-9.
  4. "Food Outlook – Global Market Analysis" (PDF). Food and Agriculture Organization of the United Nations. May 2012. pp. 8, 51–54. Archived (PDF) from the original on May 22, 2012. Retrieved August 1, 2012.
  5. "World Dairy Cow Numbers". [FAO]. January 14, 2014. Archived from the original on March 23, 2014. Retrieved March 23, 2014.
  6. Anand Kumar (October 21, 2013). "India emerging as a leading milk product exporter". Dawn. Pakistan. Archived from the original on June 30, 2015. Retrieved June 3, 2015.
  7. "Government scraps incentive on milk powder exports to check prices". timesofindia-economictimes. Archived from the original on June 30, 2015. Retrieved June 3, 2015.
  8. "Milk quality in India". Archived from the original on June 30, 2015. Retrieved June 3, 2015.
  9. "Top Milk Exporting Countries". Retrieved July 3, 2019.
  10. Gagnon-Joseph, Nathalie (February 17, 2016). "Three approaches to the milk glut". The Chronicle. Barton, Vermont. pp. 1A, 24A, 25A. Archived from the original on March 7, 2016. Retrieved March 1, 2016.
  11. Hemme, T.; Otte, J., eds. (2010). Status and Prospects for Smallholder Milk Production: A Global Perspective (PDF). Food and Agriculture Organization of the United Nations. Archived (PDF) from the original on January 19, 2012. Retrieved December 1, 2011.
  12. "milk – Search Online Etymology Dictionary". Archived from the original on May 25, 2017. Retrieved January 30, 2018.
  13. Codex Alimentarius Commission. "General Standard for the Use of Dairy Terms 206-1999" (PDF). Archived (PDF) from the original on July 9, 2017.
  14. Gussekloo, S.W.S. (2006). "Chapter 2: Feeding Structures in Birds". In Bels, V (ed.). Feeding in Domestic Vertebrates: From Structure to Behaviour. CABI Publishing. p. 22. ISBN 978-1-84593-063-9. A remarkable adaptation can be found in the crop of pigeons. During the breeding season the crop produces a yellow-white fat-rich secretion known as crop milk that is used to feed the nestlings. … The crop milk resembles strongly the milk produced by mammals, except for the fact that carbohydrates and calcium are missing in crop milk.
  15. Harper, Douglas. "milk: Origin and meaning of milk by Online Etymology Dictionary". Online Etymology Dictionary. Douglas Harper. Archived from the original on November 4, 2018. Retrieved November 4, 2018.
  16. When was Phillips' Milk of Magnesia introduced? FAQ,, accessed 4 July 2016
  17. Park & Davis Co catalog entry for milk of bismuth
  18. Raulf, Monika. The Latex Story. In: History of Allergy, K.-C. Bergmann and J. Ring, editors. Karger Medical and Scientific Publishers, 2014. pp. 248-255.
  19. "What's in a Name?: The Use of Dairy Product Names in Labeling of Plant-Based Alternatives". Science Meets Food. December 13, 2018. Retrieved December 23, 2018.
  20. "What's in a Name? Survey Explores Consumers' Comprehension of Milk and Non-Dairy Alternatives". October 11, 2018. Archived from the original on December 30, 2018. Retrieved December 23, 2018.
  21. "Do we need the government to tell us that almond milk doesn't come from a cow?". USA TODAY. Archived from the original on December 9, 2018. Retrieved December 10, 2018.
  22. Sherman, Elisabeth (July 5, 2017). "Will 'Soy Milk' Have to Change Its Name in the U.S.?". Food & Wine.
  23. "Dairy names for soya and tofu face new ban". BBC. June 14, 2017.
  24. Qiu, Linda (October 23, 2014). "Milk Grown in a Lab Is Humane and Sustainable. But Can It Catch On?". National Geographic News.
  25. Uruakpa, F.O.; Ismond, M.A.H.; Akobundu, E.N.T. (2002). "Colostrum and its benefits: A review". Nutrition Research. 22 (6): 755–67. doi:10.1016/S0271-5317(02)00373-1.
  26. Blood DC, Studdert VP, Gay CC (2007). Saunders Comprehensive Veterinary Dictionary. St. Louis, MO: Saunders Elsevierv. ISBN 978-0-7020-2789-5.
  27. The World Health Organization's infant feeding recommendation Archived April 11, 2013, at the Wayback Machine WHO, based on "Global strategy on infant and young child feeding" (2002). Retrieved February 8, 2013.
  28. Dettwyler, Katherine A. (October 1997). "When to Wean". Natural History. Archived from the original on June 6, 2013. Retrieved February 8, 2013.
  29. Basnet, S.; Schneider, M.; Gazit, A.; Mander, G.; Doctor, A. (April 2010). "Fresh Goat's Milk for Infants: Myths and Realities – A Review". Pediatrics. 125 (4): e973–77. doi:10.1542/peds.2009-1906. PMID 20231186.
  30. Curry, Andrew (July 31, 2013). "Archaeology: The milk revolution". Nature. 500 (7460): 20–22. Bibcode:2013Natur.500...20C. doi:10.1038/500020a. PMID 23903732.
  31. "Nutrition for Everyone: Basics: Saturated Fat – DNPAO". Centers for Disease Control and Prevention. Archived from the original on January 29, 2014. Retrieved June 16, 2017.
  32. "Eat less saturated fat". National Health Service. April 27, 2018. Archived from the original on April 24, 2015. Retrieved April 25, 2015.
  33. McGee, Harold (2004) [1984]. "Milk and Dairy Products". On Food and Cooking: The Science and Lore of the Kitchen (2nd ed.). New York: Scribner. pp. 7–67. ISBN 978-0-684-80001-1.
  34. "World's No 1 Milk Producer". Archived from the original on May 16, 2010. Retrieved August 28, 2010.
  35. Goff, Douglas. "Introduction to Dairy Science and Technology: Milk History, Consumption, Production, and Composition: World-wide Milk Consumption and Production". Dairy Science and Technology. University of Guelph. Archived from the original on November 12, 2014. Retrieved November 12, 2014.
  36. Bellwood, Peter (2005). "The Beginnings of Agriculture in Southwest Asia". First Farmers: the origins of agricultural societies. Malden, MA: Blackwell Publushing. pp. 44–68. ISBN 978-0-631-20566-1.
  37. Bellwood, Peter (2005). "Early Agriculture in the Americas". First Farmers: the origins of agricultural societies. Malden, MA: Blackwell Publushing. pp. 146–79. ISBN 978-0-631-20566-1.
  38. Beja-Pereira, A.; Caramelli, D.; Lalueza-Fox, C.; Vernesi, C.; Ferrand, N.; Casoli, A.; Goyache, F.; Royo, L.J.; Conti, S.; Lari, M.; Martini, A.; Ouragh, L.; Magid, A.; Atash, A.; Zsolnai, A.; Boscato, P.; Triantaphylidis, C.; Ploumi, K.; Sineo, L.; Mallegni, F.; Taberlet, P.; Erhardt, G.; Sampietro, L.; Bertranpetit, J.; Barbujani, G.; Luikart, G.; Bertorelle, G. (2006). "The origin of European cattle: Evidence from modern and ancient DNA". Proceedings of the National Academy of Sciences. 103 (21): 8113–18. Bibcode:2006PNAS..103.8113B. doi:10.1073/pnas.0509210103. PMC 1472438. PMID 16690747.
  39. Sherratt, Andrew (1981). "Plough and pastoralism: aspects of the secondary products revolution". In Hodder, I.; Isaac, G.; Hammond, N. (eds.). Pattern of the Past: Studies in honour of David Clarke. Cambridge: Cambridge University Press. pp. 261–305. ISBN 978-0-521-22763-6.
  40. Vigne, D.; Helmer, J.-D. (2007). "Was milk a 'secondary product' in the Old World Neolithisation process? Its role in the domestication of cattle, sheep and goats" (PDF). Anthropozoologica. 42 (2): 9–40. Archived from the original (PDF) on May 10, 2013.
  41. Evershed, R.P.; Payne, S.; Sherratt, A.G.; Copley, M.S.; Coolidge, J.; Urem-Kotsu, D.; Kotsakis, K.; Ozdoğan, M.; Ozdoğan, A.E.; Nieuwenhuyse, O.; Akkermans, P.M.M.G.; Bailey, D.; Andeescu, R.R.; Campbell, S.; Farid, S.; Hodder, I.; Yalman, N.; Ozbaşaran, M.; Biçakci, E.; Garfinkel, Y.; Levy, T.; Burton, M.M. (2008). "Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding". Nature. 455 (7212): 528–31. Bibcode:2008Natur.455..528E. doi:10.1038/nature07180. PMID 18690215.
  42. Price, T.D. (2000). "Europe's first farmers: an introduction". In T.D. Price (ed.). Europe's First Farmers. Cambridge: Cambridge University Press. pp. 1–18. ISBN 978-0-521-66203-1.
  43. Meadow, R.H. (1996). "The origins and spread of agriculture and pastoralism in northwestern South Asia". In D.R. Harris (ed.). The origins and spread of agriculture and pastoralism in Eurasia. London: UCL Press. pp. 390–412. ISBN 978-1-85728-538-3.
  44. Craig, Oliver E.; John Chapman; Carl Heron; Laura H. Willis; László Bartosiewicz; Gillian Taylor; Alasdair Whittle; Matthew Collins (2005). "Did the first farmers of central and eastern Europe produce dairy foods?". Antiquity. 79 (306): 882–94. arXiv:0706.4406. doi:10.1017/S0003598X00115017. hdl:10149/136330.
  45. Copley, M.S.; Berstan, R.; Mukherjee, A.J.; Dudd, S.N.; Straker, V.; Payne, S.; Evershed, R.P. (2005). "Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic". Journal of Archaeological Science. 32 (4): 523–56. doi:10.1016/j.jas.2004.08.006.
  46. Anthony, D.W. (2007). The Horse, the Wheel, and Language. Princeton, NJ: Princeton University Press. ISBN 978-0-691-05887-0.
  47. Gifford-Gonzalez, D. (2004). "Pastoralism and its Consequences". In A.B. Stahl (ed.). African archaeology: a critical introduction. Malden, MA: Blackwell Publishing. pp. 187–224. ISBN 978-1-4051-0155-4.
  48. Peters, J. (1997). "The dromedary: Ancestry, history of domestication and medical treatment in early historic times". Tierarztliche Praxis. Ausgabe G, Grosstiere/Nutztiere. 25 (6): 559–65. PMID 9451759.
  49. Pećanac, M.; Janjić, Z.; Komarcević, A.; Pajić, M.; Dobanovacki, D.; Misković, SS. (2013). "Burns treatment in ancient times". Med Pregl. 66 (5–6): 263–67. doi:10.1016/s0264-410x(02)00603-5. PMID 23888738.
  50. Valenze, D.M. (2011). "Virtuous White Liquor in the Middle Ages". Milk: a local and global history. New Haven: Yale University Press. p. 34. ISBN 978-0-300-11724-0.
  51. P.J. Atkins (1978). "The Growth of London's Railway Milk Trade, c. 1845–1914". Journal of Transport History. ss-4 (4): 208–26. doi:10.1177/002252667800400402.
  52. "The History of Milk". DairyCo. Archived from the original on January 16, 2014.
  53. "The History Of Milk", Retrieved August 13, 2010.
  54. Vallery-Radot, René (2003). Life of Pasteur 1928. pp. 113–14. ISBN 978-0-7661-4352-4. Archived from the original on January 1, 2016. Retrieved November 22, 2015.
  55. Carlisle, Rodney (2004). Scientific American Inventions and Discoveries, p. 357. John Wiley & Songs, Inc., New Jersey. ISBN 0-471-24410-4.
  56. Peter Atkins. "The pasteurization of England: the science, cultureand health implications of food processing, 1900-1950". Food, Science, Policy and Regulation in the 20Th Century.
  57. Hwang, Andy; Huang, Lihan (January 31, 2009). Ready-to-Eat Foods: Microbial Concerns and Control Measures. CRC Press. p. 88. ISBN 978-1-4200-6862-7. Archived from the original on June 2, 2013. Retrieved April 19, 2011.
  58. Gerosa and Skoet (2012). "Milk availability – Trends in production and demand and medium-term outlook" (PDF). Food and Agriculture Organization, United Nations. Archived (PDF) from the original on September 6, 2012. Retrieved August 1, 2012.
  59. Why Bank Milk? Archived August 7, 2013, at the Wayback Machine Human Milk Banking Association of North America
  60. "Moose milk makes for unusual cheese". The Globe and Mail. June 26, 2004. Archived from the original on January 7, 2008. Retrieved August 27, 2007.
  61. "About Bison: Frequently Asked Questions". National Bison Association. Archived from the original on February 11, 2006. Retrieved August 16, 2009.
  62. Allen, Joel Asaph (June 1877). "Part II., Chapter 4. Domestication of the Buffalo". In Elliott Coues, Secretary of the Survey (ed.). History of the American Bison: bison americanus. extracted from the 9th Annual Report of the United States Geological Survey (1875). Washington, DC: Department of the Interior, United States Geological Survey, Government Printing Office. pp. 585–86. OCLC 991639. Retrieved August 16, 2009.
  63. O'Connor, George (March–April 1981). "The Basics of Beefalo Raising". Mother Earth News (68). Archived from the original on May 4, 2007. Retrieved February 8, 2011.
  64. – Waarom drinken we de melk van varkens niet? (in Dutch)
  65. "Nieuw (en peperduur): kaas van varkensmelk – Plezier in de Keuken". August 26, 2015. Archived from the original on January 1, 2018. Retrieved January 30, 2018.
  66. "Milk, whole fresh cow producers". UN Food & Agriculture Organization. Archived from the original on July 13, 2011. Retrieved April 22, 2016.
  67. "Milk, whole fresh sheep producers". UN Food & Agriculture Organization. Archived from the original on July 13, 2011. Retrieved April 22, 2016.
  68. "Milk, whole fresh goat producers". UN Food & Agriculture Organization. Archived from the original on July 13, 2011. Retrieved April 22, 2016.
  69. "Milk, whole fresh buffalo producers". UN Food & Agriculture Organization. Archived from the original on July 13, 2011. Retrieved April 22, 2016.
  70. "Dairy production and products: Milk production". Food and Agriculture Organization. Archived from the original on December 8, 2015. Retrieved December 3, 2015.
  71. "Milk and milk product statistics – Statistics Explained". European Commission. Archived from the original on November 28, 2015. Retrieved December 3, 2015.
  72. Henriksen, J. (2009) "Milk for Health and Wealth". FAO Diversification Booklet Series 6, Rome
  73. Sinha, O.P. (2007) Agro-industries characterization and appraisal: Dairy in India Archived November 13, 2012, at the Wayback Machine, FAO, Rome
  74. "International Committee for Animal Recording". ICAR – Archived from the original on July 31, 2012. Retrieved August 1, 2012.
  75. FAOSTAT, Yield data 2010 – Cow milk, whole, fresh Archived February 13, 2012, at the Wayback Machine, FAOSTAT, Food And Agricultural Organization of the United Nations; Retrieved August 1, 2012.
  76. Wayne Arnold, "A Thirst for Milk Bred by New Wealth Sends Prices Soaring", The New York Times September 4, 2007.
  77. Bewley, Elizabeth (June 24, 2010). "Dairy farmers tackle big coops". Burlington Free Press. Burlington, VT. pp. 8B.
  78. Briggs, Clara Guibourg and Helen (February 22, 2019). "Which vegan milks are best for the planet?". Retrieved September 4, 2019.
  79. Nemecek, T.; Poore, J. (June 1, 2018). "Reducing food's environmental impacts through producers and consumers". Science. 360 (6392): 987–992. Bibcode:2018Sci...360..987P. doi:10.1126/science.aaq0216. ISSN 0036-8075. PMID 29853680.
  80. Assessing the Environmental Impacts of Consumption and Production, International Panel for Resource Management, United Nations Environment Programme, June 2010.
  81. Carus, Felicity (June 2, 2010). "UN urges global move to meat and dairy-free diet". The Guardian. Archived from the original on March 3, 2018. Retrieved March 3, 2018.
    "Energy and Agriculture Top Resource Panel's Priority List for Sustainable 21st Century", United Nations Environment Programme (UNEP), Brussels, 2 June 2010.
    For an opposing position, Simon Fairlie, Meat: A Benign Extravagance, Chelsea Green Publishing, 2010.
  82. Hoekstra, Arjen Y. (April 1, 2012). "The hidden water resource use behind meat and dairy". Animal Frontiers. 2 (2): 3–8. doi:10.2527/af.2012-0038. ISSN 2160-6056.
  83. Mekonnen, Mesfin M.; Hoekstra, Arjen Y. (April 1, 2012). "A Global Assessment of the Water Footprint of Farm Animal Products". Ecosystems. 15 (3): 401–415. doi:10.1007/s10021-011-9517-8. ISSN 1435-0629.
  84. "Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment" (PDF). FAO.
  85. Ross, Philip (November 26, 2013). "Cow Farts Have 'Larger Greenhouse Gas Impact' Than Previously Thought; Methane Pushes Climate Change". International Business Times. Retrieved September 7, 2019.
  86. "Greenhouse Gas Emissions: Greenhouse Gases Overview | Climate Change | US EPA". October 13, 2015. Retrieved September 7, 2019.
  87. Rolf Jost "Milk and Dairy Products" Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi:10.1002/14356007.a16_589.pub3
  88. Fox, P.F. Advanced Dairy Chemistry, Vol. 3: Lactose, Water, Salts and Vitamins. 2nd ed. Chapman and Hall: New York, 1995.
  89. Fox, P.F. Advanced Dairy Chemistry: Vol 2 Lipids. 2nd Ed. Chapman and Hall: New York, 1995.
  90. Goff, Douglas (2010). "Raw milk quality". Dairy Science and Technology. University of Guelph Food Science, Guelph, Ontario, Canada. Archived from the original on December 31, 2014. Retrieved February 8, 2011.
  91. Crowley, Shane V.; Kelly, Alan L.; Lucey, John A.; O'Mahony, James A. (2017). "Potential Applications of Non-Bovine Mammalian Milk in Infant Nutrition". In Park, Young W.; Haenlein, George F.W.; Wendorff, William L. (eds.). Handbook of Milk of Non-Bovine Mammals (2nd ed.). John Wiley & Sons Ltd. p. 630. doi:10.1002/9781119110316.ch13. ISBN 9781119110316.
  92. chemistry and physics Archived June 14, 2006, at the Wayback Machine. Retrieved December 9, 2011.
  93. Services, Department of Health & Human. "Milk". Archived from the original on October 10, 2016. Retrieved October 9, 2016.
  94. Ball, C. Olin (1943). "Short-Time Pasteurization of Milk". Industrial & Engineering Chemistry. 35 (1): 71–84. doi:10.1021/ie50397a017.
  95. Ranieri, M.L; Huck, J.R; Sonnen, M; Barbano, D.M; Boor, K.J (2009). "High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk". Journal of Dairy Science. 92 (10): 4823–32. doi:10.3168/jds.2009-2144. PMID 19762797.
  96. Wilson, G.S. (1943). "The Pasteurization of Milk". British Medical Journal. 1 (4286): 261–62. doi:10.1136/bmj.1.4286.261. PMC 2282302. PMID 20784713.
  97. Hui, Y.H.; Meunier-Goddik, Lisbeth; Josephsen, Jytte; Nip, Wai-Kit; Stanfield, Peggy S (2004). Handbook of Food and Beverage Fermentation Technology. p. 265. ISBN 978-0-203-91355-0. Retrieved September 6, 2016.
  98. Stabel, J; Lambertz, A (April 27, 2004). "Efficacy of Pasteurization Conditions for the Inactivation of Mycobacterium avium subsp. paratuberculosis in Milk". Journal of Food Protection. 67 (12): 2719–26. doi:10.4315/0362-028x-67.12.2719. PMID 15633677. Archived from the original on September 20, 2016. Retrieved September 6, 2016.
  99. Peterson, Hayley (February 3, 2015). "We tried Coca-Cola's new milk that costs twice as much as regular – here's the verdict". Business Insider. Archived from the original on April 24, 2015. Retrieved April 19, 2015.
  100. "CRS Report for Congress: Agriculture: A Glossary of Terms, Programs, and Laws, 2005 Edition – Order Code 97-905" (PDF). Archived from the original (PDF) on August 10, 2011. Retrieved July 26, 2009.
  101. Eaves, Ali (August 24, 2015). "Is This the Best New Post-Workout Drink?". Men's Health. Archived from the original on March 30, 2018. Retrieved March 29, 2018.
  102. Goff, Douglas (2010). "Homogenization of Milk and Milk Products". Dairy Science and Technology. University of Guelph. Archived from the original on May 24, 2011. Retrieved February 8, 2011.
  103. "Research Can Lead To Longer Shelf Life For Dairy Products". December 23, 2002. Archived from the original on August 19, 2010. Retrieved August 28, 2010.
  104. "Why does organic milk last so much longer than regular milk?". Scientific American. Archived from the original on December 1, 2016. Retrieved December 1, 2016.
  105. "Milk contains traces of ash". The Hindu. Chennai, India. July 10, 2008. Archived from the original on January 18, 2012. Retrieved August 28, 2010.
  106. "Whale". Encarta. Archived from the original on October 28, 2009.
  107. "Milk, whole, 3.25% milkfat, with added vitamin D", United States Department of Agriculture, Agricultural Research Service.
  108. "Soymilk (all flavors), unsweetened, with added calcium, vitamins A and D", United States Department of Agriculture, Agricultural Research Service.
  109. "Beverages, almond milk, unsweetened, shelf stable", United States Department of Agriculture, Agricultural Research Service.
  110. Oat Milk Nutrition Facts, Aldi, Batavia, IL
  111. Designing Foods: Animal Product Options in the Marketplace. National Academies Press. 1988. ISBN 978-0-309-03795-2.
  112. "National Nutrient Database for Standard Reference Release 28". United States Department of Agriculture: Agricultural Research Service.
  113. "Nutrition facts, calories in food, labels, nutritional information and analysis".
  114. "USDA Table of Nutrient Retention Factors, Release 6" (PDF). USDA. USDA. December 2007.
  115. "Nutritional Effects of Food Processing".
  116. Jones, Alicia Noelle (2002). "Density of Milk". The Physics Factbook. Archived from the original on August 5, 2011. Retrieved December 26, 2006.
  117. Dietary Guidelines for Americans 2010 Archived September 1, 2016, at the Wayback Machine, p. 38, U.S. Department of Agriculture, U.S. Department of Health and Human Services, December 2010.
  118. Kotz, Deborah (July 8, 2013) How much milk do we really need? Archived May 25, 2017, at the Wayback Machine. Boston Globe.
  119. Roy BD (2008). "Milk: the new sports drink? A Review". J Int Soc Sports Nutr. 5 (1): 15. doi:10.1186/1550-2783-5-15. PMC 2569005. PMID 18831752.
  120. Whigham, LD; Watras, AC; Schoeller, DA (May 2007). "Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans". The American Journal of Clinical Nutrition. 85 (5): 1203–11. doi:10.1093/ajcn/85.5.1203. PMID 17490954.
  121. Feskanich, D; Willett, WC; Stampfer, MJ; Colditz, GA (1997). "Milk, dietary calcium, and bone fractures in women: a 12-year prospective study". American Journal of Public Health. 87 (6): 992–97. doi:10.2105/AJPH.87.6.992. PMC 1380936. PMID 9224182.
  122. Brody T. (1999) "Calcium and phosphate". pp. 761–94 in Nutritional biochemistry, 2nd ed. Boston: Academic Press, ISBN 0-12-134836-9.
  123. Heaney, Robert P.; Weaver, Connie M. (1990). "Calcium absorption from kale". The American Journal of Clinical Nutrition. 51 (4): 656–57. doi:10.1093/ajcn/51.4.656. PMID 2321572.
  124. "Calcium and Milk: What's Best for Your Bones and Health?". The Nutrition Source. Harvard School of Public Health. 2011. Archived from the original on February 4, 2011. Retrieved February 8, 2011.
  125. Bonjour JP (2013). "Nutritional disturbance in acid-base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney". The British Journal of Nutrition. 110 (7): 1168–77. doi:10.1017/S0007114513000962. PMC 3828631. PMID 23551968.
  126. Fenton TR, Lyon AW (2011). "Milk and acid-base balance: proposed hypothesis versus scientific evidence". Journal of the American College of Nutrition. 30 (5 Suppl 1): 471S–75S. doi:10.1080/07315724.2011.10719992. PMID 22081694.
  127. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA (2009). "Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance". Journal of Bone and Mineral Research. 24 (11): 1835–40. doi:10.1359/jbmr.090515. PMID 19419322.
  128. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, Kanis JA, Orav EJ, Staehelin HB, Kiel DP, Burckhardt P, Henschkowski J, Spiegelman D, Li R, Wong JB, Feskanich D, Willett WC (2011). "Milk intake and risk of hip fracture in men and women: a meta-analysis of prospective cohort studies". Journal of Bone and Mineral Research. 26 (4): 833–39. doi:10.1002/jbmr.279. PMID 20949604.
  129. Deng Y, Misselwitz B, Dai N, Fox M (2015). "Lactose Intolerance in Adults: Biological Mechanism and Dietary Management". Nutrients (Review). 7 (9): 8020–35. doi:10.3390/nu7095380. PMC 4586575. PMID 26393648.
  130. "Lactose Intolerance". NIDDK. June 2014. Archived from the original on October 25, 2016. Retrieved October 25, 2016.
  131. Suchy FJ, Brannon PM, Carpenter TO, Fernandez JR, Gilsanz V, Gould JB, et al. (2010). "NIH consensus development conference statement: Lactose intolerance and health". NIH Consens State Sci Statements (Consensus Development Conference, NIH. Review). 27 (2): 1–27. PMID 20186234. Archived from the original on December 18, 2016. Retrieved December 6, 2016.
  132. Heyman MB (2006). "Lactose Intolerance in Infants, Children, and Adolescents". Pediatrics (Review). 118 (3): 1279–86. doi:10.1542/peds.2006-1721. PMID 16951027.
  133. Berni Canani, Roberto; Pezzella, Vincenza; Amoroso, Antonio; Cozzolino, Tommaso; Di Scala, Carmen; Passariello, Annalisa (2016). "Diagnosing and Treating Intolerance to Carbohydrates in Children". Nutrients (Review). 8 (3): 157. doi:10.3390/nu8030157. PMC 4808885. PMID 26978392.
  134. "Lactose Intolerance". Archived from the original on July 24, 2018. Retrieved July 24, 2018.
  135. "How many people are affected or at risk for lactose intolerance?". NICHD. May 6, 2014. Archived from the original on October 25, 2016. Retrieved October 25, 2016.
  136. Swallow, Dallas M. (December 2003). "Genetics of Lactase Persistence and Lactose Intolerance". Annual Review of Genetics. 37 (1): 197–219. doi:10.1146/annurev.genet.37.110801.143820. PMID 14616060.
  137. Bersaglieri, Todd; Sabeti, Pardis C.; Patterson, Nick; Vanderploeg, Trisha; Schaffner, Steve F.; Drake, Jared A.; Rhodes, Matthew; Reich, David E.; Hirschhorn, Joel N. (June 2004). "Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene". The American Journal of Human Genetics. 74 (6): 1111–1120. doi:10.1086/421051. PMC 1182075. PMID 15114531.
  138. "Listeria (Listeriosis)". Centers for Disease Control and Prevention. October 22, 2015. Archived from the original on December 19, 2015. Retrieved December 23, 2015.
  139. Høst A (1994). "Cow's milk protein allergy and intolerance in infancy. Some clinical, epidemiological and immunological aspects". Pediatric Allergy and Immunology. 5 (5 Suppl): 1–36. doi:10.1111/j.1399-3038.1994.tb00352.x. PMID 7704117.
  140. Severson, Kim (August 24, 2010). "A School Fight Over Chocolate Milk". The New York Times. Archived from the original on May 6, 2017. Retrieved February 22, 2017.
  141. Oftedal, Olav T. (2002). "The mammary gland and its origin during synapsid evolution". Journal of Mammary Gland Biology and Neoplasia. 7 (3): 225–52. doi:10.1023/A:1022896515287. PMID 12751889.
  142. Oftedal, Olav T. (2002). "The origin of lactation as a water source for parchment-shelled eggs". Journal of Mammary Gland Biology and Neoplasia. 7 (3): 253–66. doi:10.1023/A:1022848632125. PMID 12751890.
  143. "Lactating on Eggs". July 14, 2003. Archived from the original on April 14, 2009. Retrieved March 8, 2009.
  144. Lefèvre CM, Sharp JA, Nicholas KR (2010). "Evolution of lactation: ancient origin and extreme adaptations of the lactation system". Annual Review of Genomics and Human Genetics. 11 (1): 219–38. doi:10.1146/annurev-genom-082509-141806. PMID 20565255.
  145. Vorbach C, Capecchi MR, Penninger JM (2006). "Evolution of the mammary gland from the innate immune system?". BioEssays. 28 (6): 606–16. doi:10.1002/bies.20423. PMID 16700061.
  146. Goldman A.S. (2002). "Evolution of the mammary gland defense system and the ontogeny of the immune system" (PDF). Journal of Mammary Gland Biology and Neoplasia. 7 (3): 277–89. doi:10.1023/A:1022852700266. PMID 12751892. Archived from the original (PDF) on June 20, 2013.
  147. Hu, Yaoming; Meng, Jin; Clark, James M (2009). "A New Tritylodontid from the Upper Jurassic of Xinjiang, China". Acta Palaeontologica Polonica. 54 (3): 385–91. doi:10.4202/app.2008.0053.
  148. "Report on the Food and Drug Administration's Review of the Safety of Recombinant Bovine Somatotropin". U.S. Food and Drug Administration. April 23, 2009. Archived from the original on August 23, 2016. Retrieved August 25, 2016.
  149. "Bovine Somatotropin". NIH State of the Science Statements. National Institutes of Health.
  150. "Evaluation of certain veterinary drug residues in food" (PDF). World Health Organization. 2014. Archived (PDF) from the original on August 3, 2016. Retrieved August 25, 2016.
  151. Voluntary Labeling of Milk and Milk Products From Cows That Have Not Been Treated With Recombinant Bovine Somatotropin. Retrieved November 24, 2011.
  152. Epstein, Samuel S. "Milk: America's Health Problem". Cancer Prevention Coalition. Archived from the original on March 14, 2010. Retrieved August 28, 2010.
  153. "Mastitis Control Programs: Milk Quality Evaluation Tools for Dairy Farmers". January 1, 1997. Archived from the original on September 4, 2010. Retrieved August 28, 2010.
  154. Greger, Michael (January 2001). "Paratuberculosis and Crohn's Disease: Got Milk?" (PDF). Vegan Outreach. Archived from the original (PDF) on July 18, 2011. Retrieved February 8, 2011.
  155. "European Council Decision of December 17, 1999". Archived from the original on October 28, 2010. Retrieved August 28, 2010.
  156. People for the Ethical Treatment of Animals. "Milk Sucks". Archived from the original on January 9, 2010. Retrieved December 9, 2009.
  157. Marshall, Michael. "Why humans have evolved to drink milk". Retrieved July 23, 2019.
  158. United States. Office of Dietary Supplements. Dietary Supplement Fact Sheet: Calcium. 2013. Web. Archived November 14, 2013, at the Wayback Machine.
  159. Mekonnen, Mesfin M; Hoekstra, Arjen Y (2012). "A Global Assessment of the Water Footprint of Farm Animal Products". Ecosystems. 15 (3): 401–15. doi:10.1007/s10021-011-9517-8.
  160. Sahi, T (1974). "Lactose malabsorption in Finnish-speaking and Swedish-speaking populations in Finland". Scandinavian Journal of Gastroenterology. 9 (3): 303–08. PMID 4852638.
  161. Zero Lactose – Enfin une solution pour les intolérants au lactose Archived December 6, 2013, at the Wayback Machine. Retrieved November 24, 2011.
  162. Lactose Free Milk. Real Goodness. Retrieved November 24, 2011.
  163. "Lactose intolerance: prevalence, symptoms and diagnosis". The Dairy Council. Archived from the original on October 26, 2015.
  164. "Yogurt and Other Cultured Dairy Products", National Dairy Council, 2000.
  165. Rombauer, Irma S. and Marion Rombauer Becker (1975). The Joy of Cooking (Revised Edition). Bobbs Merrill. p. 533. ISBN 978-0-672-51831-7.
  166. "How to Buy Dairy Products" Archived December 2, 2007, at the Wayback Machine, Home and Garden Bulletin 255, USDA, February 1995. Retrieved May 16, 2007.
  167. Main, Emily (November 30, 2009). "Chocolate Milk Debate Rages On". Rodale News. Archived from the original on August 15, 2010. Retrieved August 28, 2010.
  168. Milk and Juice Cartons Fact Sheet, Waste Wise WA, Retrieved June 21, 2009.
  169. "Adulterated milk is what Indians are drinking". Centre for Science and Environment. Archived from the original on June 25, 2015. Retrieved June 28, 2015.
  170. Coughlan, Sean (March 28, 2006). "Milk's online top-up". BBC News. Archived from the original on September 1, 2007. Retrieved August 28, 2010.
  171. "Find me a Milkman – I want doorstep deliveries!". Dairy UK. Archived from the original on October 31, 2010. Retrieved February 8, 2011.
  172. ""Milk product roadmaps", The Department for Environment, Food and Rural Affairs". Archived from the original on April 5, 2012. Retrieved August 28, 2010.
  173. Kibor, Fred (March 9, 2016). "Tracing the origin of Mursik". The Standard. Archived from the original on November 9, 2016. Retrieved November 8, 2016.
  174. Neondo, Henry. "More Kenyans Consume Raw Milk Due to Poverty". City Farmer. Archived from the original on November 13, 2016. Retrieved November 8, 2016.
  175. Rosenbloom, Stephanie (June 30, 2008). "Solution, or Mess? A Milk Jug for a Green Earth". The New York Times. Archived from the original on October 18, 2016. Retrieved February 22, 2017.
  176. B., Marcus, Jacqueline (2013). Culinary nutrition : the science and practice of healthy cooking. Amsterdam: Elsevier/Academic Press. ISBN 978-0-12-391882-6. OCLC 806291270.
  177. board, NPCS (2012). Detailed Project Profiles on Dairy & Dairy Products (2nd Edn.). Niir Project Consultancy Services. ISBN 978-93-81039-10-6.
  178. Yiu H. Hui (2006). Handbook of Food Science, Technology, and Engineering, Volume 2. CRC Press. ISBN 978-0-8493-9848-3. p. 58
  179. "milk". Archived from the original on December 24, 2017. Retrieved January 30, 2018 via The Free Dictionary.
  180. Leeming, David Adams (1998). Mythology: The Voyage of the Hero (Third ed.). Oxford: Oxford University Press. p. 44. ISBN 978-0-19-511957-2.
  181. Pache, Corinne Ondine (2010). "Hercules". In Gargarin, Michael; Fantham, Elaine (eds.). Ancient Greece and Rome. 1: Academy-Bible. Oxford: Oxford University Press. p. 400. ISBN 978-0-19-538839-8.
  182. Crawford et al., part B, section III, ch. 1: Butter Archived February 3, 2006, at the Wayback Machine. Retrieved November 28, 2005.
  183. "Caspar Milquetoast". Archived from the original on November 21, 2013. Retrieved November 17, 2013.
  184. Green, Jonathon (2005). Cassell's Dictionary of Slang. Weidenfeld & Nicolson. p. 943. ISBN 978-0-304-36636-1.
  185. Campbell, Malcolm (September 19, 2003). "Fact Sheet: Milk Fungicide". Australian Broadcasting Corporation. Archived from the original on August 18, 2016. Retrieved April 1, 2009.
  186. Hoffelt, Jeffrey (May 25, 2011). "Milk works as fertilizer, says preliminary study". Minnesota Farm Guide. Archived from the original on September 1, 2016. Retrieved June 3, 2015.
  187. Phipps, Nikki. "Milk Fertilizer Benefits: Using Milk Fertilizer On Plants". Archived from the original on June 30, 2015. Retrieved June 3, 2015.
  188. "Drop of white the right stuff for vines". Science Daily. September 12, 2002. Archived from the original on July 17, 2009. Retrieved April 1, 2009.
  189. Wagner Bettiol, Brenno Domingues Astiarraga and Alfredo José Barreto Luiz. "Effectiveness of cow's milk against zucchini squash powdery mildew (Sphaerotheca fuliginea) in greenhouse conditions". Archived from the original on April 25, 2015. Retrieved June 3, 2015.CS1 maint: uses authors parameter (link)

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.