Mercator series

In mathematics, the Mercator series or Newton–Mercator series is the Taylor series for the natural logarithm:

In summation notation,

The series converges to the natural logarithm (shifted by 1) whenever .


The series was discovered independently by Nicholas Mercator, Isaac Newton and Gregory Saint-Vincent. It was first published by Mercator, in his 1668 treatise Logarithmotechnia.


The series can be obtained from Taylor's theorem, by inductively computing the nth derivative of at , starting with

Alternatively, one can start with the finite geometric series ()

which gives

It follows that

and by termwise integration,

If , the remainder term tends to 0 as .

This expression may be integrated iteratively k more times to yield



are polynomials in x.[1]

Special cases

Setting in the Mercator series yields the alternating harmonic series

Complex series

The complex power series

is the Taylor series for , where log denotes the principal branch of the complex logarithm. This series converges precisely for all complex number . In fact, as seen by the ratio test, it has radius of convergence equal to 1, therefore converges absolutely on every disk B(0, r) with radius r < 1. Moreover, it converges uniformly on every nibbled disk , with δ > 0. This follows at once from the algebraic identity:

observing that the right-hand side is uniformly convergent on the whole closed unit disk.


  1. Medina, Luis A.; Moll, Victor H.; Rowland, Eric S. (2009). "Iterated primitives of logarithmic powers". International Journal of Number Theory. 7: 623–634. arXiv:0911.1325. doi:10.1142/S179304211100423X.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.