Mathematics education

In contemporary education, mathematics education is the practice of teaching and learning mathematics, along with the associated scholarly research.

Researchers in mathematics education are primarily concerned with the tools, methods and approaches that facilitate practice or the study of practice; however, mathematics education research, known on the continent of Europe as the didactics or pedagogy of mathematics, has developed into an extensive field of study, with its own concepts, theories, methods, national and international organisations, conferences and literature. This article describes some of the history, influences and recent controversies..


Elementary mathematics was part of the education system in most ancient civilisations, including Ancient Greece, the Roman Empire, Vedic society and ancient Egypt. In most cases, a formal education was only available to male children with a sufficiently high status, wealth or caste.

In Plato's division of the liberal arts into the trivium and the quadrivium, the quadrivium included the mathematical fields of arithmetic and geometry. This structure was continued in the structure of classical education that was developed in medieval Europe. Teaching of geometry was almost universally based on Euclid's Elements. Apprentices to trades such as masons, merchants and money-lenders could expect to learn such practical mathematics as was relevant to their profession.

In the Renaissance, the academic status of mathematics declined, because it was strongly associated with trade and commerce, and considered somewhat un-Christian.[1] Although it continued to be taught in European universities, it was seen as subservient to the study of Natural, Metaphysical and Moral Philosophy. The first modern arithmetic curriculum (starting with addition, then subtraction, multiplication, and division) arose at reckoning schools in Italy in the 1300s.[2] Spreading along trade routes, these methods were designed to be used in commerce. They contrasted with Platonic math taught at universities, which was more philosophical and concerned numbers as concepts rather than calculating methods.[2] They also contrasted with mathematical methods learned by artisan apprentices, which were specific to the tasks and tools at hand. For example, the division of a board into thirds can be accomplished with a piece of string, instead of measuring the length and using the arithmetic operation of division.[1]

The first mathematics textbooks to be written in English and French were published by Robert Recorde, beginning with The Grounde of Artes in 1540. However, there are many different writings on mathematics and mathematics methodology that date back to 1800 BCE. These were mostly located in Mesopotamia where the Sumerians were practicing multiplication and division. There are also artifacts demonstrating their own methodology for solving equations like the quadratic equation. After the Sumerians some of the most famous ancient works on mathematics come from Egypt in the form of the Rhind Mathematical Papyrus and the Moscow Mathematical Papyrus. The more famous Rhind Papyrus has been dated to approximately 1650 BCE but it is thought to be a copy of an even older scroll. This papyrus was essentially an early textbook for Egyptian students.

The social status of mathematical study was improving by the seventeenth century, with the University of Aberdeen creating a Mathematics Chair in 1613, followed by the Chair in Geometry being set up in University of Oxford in 1619 and the Lucasian Chair of Mathematics being established by the University of Cambridge in 1662.

In the 18th and 19th centuries, the Industrial Revolution led to an enormous increase in urban populations. Basic numeracy skills, such as the ability to tell the time, count money and carry out simple arithmetic, became essential in this new urban lifestyle. Within the new public education systems, mathematics became a central part of the curriculum from an early age.

By the twentieth century, mathematics was part of the core curriculum in all developed countries.

During the twentieth century, mathematics education was established as an independent field of research. Here are some of the main events in this development:

In the 20th century, the cultural impact of the "electronic age" (McLuhan) was also taken up by educational theory and the teaching of mathematics. While previous approach focused on "working with specialized 'problems' in arithmetic", the emerging structural approach to knowledge had "small children meditating about number theory and 'sets'."[4]


At different times and in different cultures and countries, mathematics education has attempted to achieve a variety of different objectives. These objectives have included:


The method or methods used in any particular context are largely determined by the objectives that the relevant educational system is trying to achieve. Methods of teaching mathematics include the following:

  • Computer-based math an approach based around use of mathematical software as the primary tool of computation.
  • Computer-based mathematics education involving the use of computers to teach mathematics. Mobile applications have also been developed to help students learn mathematics.[10][11][12]
  • Conventional approach: the gradual and systematic guiding through the hierarchy of mathematical notions, ideas and techniques. Starts with arithmetic and is followed by Euclidean geometry and elementary algebra taught concurrently. Requires the instructor to be well informed about elementary mathematics, since didactic and curriculum decisions are often dictated by the logic of the subject rather than pedagogical considerations. Other methods emerge by emphasizing some aspects of this approach.
  • Discovery math: a constructivist method of teaching (discovery learning) mathematics which centres around problem-based or inquiry-based learning, with the use of open-ended questions and manipulative tools.[13] This type of mathematics education was implemented in various parts of Canada beginning in 2005.[14] Discovery-based mathematics is at the forefront of the Canadian Math Wars debate with many criticizing its effectiveness due to declining math scores, in comparison to traditional teaching models that value direct instruction, rote learning, and memorization.[13]
  • Exercises: the reinforcement of mathematical skills by completing large numbers of exercises of a similar type, such as adding vulgar fractions or solving quadratic equations.
  • Historical method: teaching the development of mathematics within an historical, social and cultural context. Provides more human interest than the conventional approach.[15]
  • Mastery: an approach in which most students are expected to achieve a high level of competence before progressing
  • New Math: a method of teaching mathematics which focuses on abstract concepts such as set theory, functions and bases other than ten. Adopted in the US as a response to the challenge of early Soviet technical superiority in space, it began to be challenged in the late 1960s. One of the most influential critiques of the New Math was Morris Kline's 1973 book Why Johnny Can't Add. The New Math method was the topic of one of Tom Lehrer's most popular parody songs, with his introductory remarks to the song: " the new approach, as you know, the important thing is to understand what you're doing, rather than to get the right answer."
  • Problem solving: the cultivation of mathematical ingenuity, creativity and heuristic thinking by setting students open-ended, unusual, and sometimes unsolved problems. The problems can range from simple word problems to problems from international mathematics competitions such as the International Mathematical Olympiad. Problem solving is used as a means to build new mathematical knowledge, typically by building on students' prior understandings.
  • Recreational mathematics: Mathematical problems that are fun can motivate students to learn mathematics and can increase enjoyment of mathematics.[16]
  • Standards-based mathematics: a vision for pre-college mathematics education in the US and Canada, focused on deepening student understanding of mathematical ideas and procedures, and formalized by the National Council of Teachers of Mathematics which created the Principles and Standards for School Mathematics.
  • Relational approach: Uses class topics to solve everyday problems and relates the topic to current events.[17] This approach focuses on the many uses of mathematics and helps students understand why they need to know it as well as helping them to apply mathematics to real world situations outside of the classroom.
  • Rote learning: the teaching of mathematical results, definitions and concepts by repetition and memorisation typically without meaning or supported by mathematical reasoning. A derisory term is drill and kill. In traditional education, rote learning is used to teach multiplication tables, definitions, formulas, and other aspects of mathematics.

Content and age levels

Different levels of mathematics are taught at different ages and in somewhat different sequences in different countries. Sometimes a class may be taught at an earlier age than typical as a special or honors class.

Elementary mathematics in most countries is taught in a similar fashion, though there are differences. Most countries tend to cover fewer topics in greater depth than in the United States.[18]

In most of the U.S., algebra, geometry and analysis (pre-calculus and calculus) are taught as separate courses in different years of high school. Mathematics in most other countries (and in a few U.S. states) is integrated, with topics from all branches of mathematics studied every year. Students in many countries choose an option or pre-defined course of study rather than choosing courses à la carte as in the United States. Students in science-oriented curricula typically study differential calculus and trigonometry at age 16–17 and integral calculus, complex numbers, analytic geometry, exponential and logarithmic functions, and infinite series in their final year of secondary school. Probability and statistics may be taught in secondary education classes.

Science and engineering students in colleges and universities may be required to take multivariable calculus, differential equations, and linear algebra. Applied mathematics is also used in specific majors; for example, civil engineers may be required to study fluid mechanics,[19] while "math for computer science" might include graph theory, permutation, probability, and proofs.[20] Mathematics students would continue to study potentially any area.


Throughout most of history, standards for mathematics education were set locally, by individual schools or teachers, depending on the levels of achievement that were relevant to, realistic for, and considered socially appropriate for their pupils.

In modern times, there has been a move towards regional or national standards, usually under the umbrella of a wider standard school curriculum. In England, for example, standards for mathematics education are set as part of the National Curriculum for England,[21] while Scotland maintains its own educational system. Many other countries have centralized ministries which set national standards or curricula, and sometimes even textbooks.

Ma (2000) summarised the research of others who found, based on nationwide data, that students with higher scores on standardised mathematics tests had taken more mathematics courses in high school. This led some states to require three years of mathematics instead of two. But because this requirement was often met by taking another lower level mathematics course, the additional courses had a “diluted” effect in raising achievement levels.[22]

In North America, the National Council of Teachers of Mathematics (NCTM) published the Principles and Standards for School Mathematics in 2000 for the US and Canada, which boosted the trend towards reform mathematics. In 2006, the NCTM released Curriculum Focal Points, which recommend the most important mathematical topics for each grade level through grade 8. However, these standards were guidelines to implement as American states and Canadian provinces chose. In 2010, the National Governors Association Center for Best Practices and the Council of Chief State School Officers published the Common Core State Standards for US states, which were subsequently adopted by most states. Adoption of the Common Core State Standards in mathematics is at the discretion of each state, and is not mandated by the federal government.[23] "States routinely review their academic standards and may choose to change or add onto the standards to best meet the needs of their students."[24] The NCTM has state affiliates that have different education standards at the state level. For example, Missouri has the Missouri Council of Teachers of Mathematics (MCTM) which has its own pillars and standards of education listed on its website. The MCTM also offers membership opportunities to teachers and future teachers so they can stay up to date on the changes in math educational standards.[25]

The Programme for International Student Assessment (PISA), created by the Organisation for the Economic Co-operation and Development (OECD), is a global program studying the reading, science and mathematic abilities of 15-year-old students.[26] The first assessment was conducted in the year 2000 with 43 countries participating.[27] PISA has repeated this assessment every three years to provide comparable data, helping to guide global education to better prepare youth for future economies. There have been many ramifications following the results of triennial PISA assessments due to implicit and explicit responses of stakeholders, which have led to education reform and policy change.[27][28][13]


"Robust, useful theories of classroom teaching do not yet exist".[29] However, there are useful theories on how children learn mathematics and much research has been conducted in recent decades to explore how these theories can be applied to teaching. The following results are examples of some of the current findings in the field of mathematics education:

Important results[29]
One of the strongest results in recent research is that the most important feature in effective teaching is giving students "opportunity to learn". Teachers can set expectations, time, kinds of tasks, questions, acceptable answers, and type of discussions that will influence students' opportunity to learn. This must involve both skill efficiency and conceptual understanding.
Conceptual understanding[29]
Two of the most important features of teaching in the promotion of conceptual understanding are attending explicitly to concepts and allowing students to struggle with important mathematics. Both of these features have been confirmed through a wide variety of studies. Explicit attention to concepts involves making connections between facts, procedures and ideas. (This is often seen as one of the strong points in mathematics teaching in East Asian countries, where teachers typically devote about half of their time to making connections. At the other extreme is the U.S.A., where essentially no connections are made in school classrooms.[30]) These connections can be made through explanation of the meaning of a procedure, questions comparing strategies and solutions of problems, noticing how one problem is a special case of another, reminding students of the main point, discussing how lessons connect, and so on.
Deliberate, productive struggle with mathematical ideas refers to the fact that when students exert effort with important mathematical ideas, even if this struggle initially involves confusion and errors, the end result is greater learning. This has been shown to be true whether the struggle is due to challenging, well-implemented teaching, or due to faulty teaching the students must struggle to make sense of.
Formative assessment[31]
Formative assessment is both the best and cheapest way to boost student achievement, student engagement and teacher professional satisfaction. Results surpass those of reducing class size or increasing teachers' content knowledge. Effective assessment is based on clarifying what students should know, creating appropriate activities to obtain the evidence needed, giving good feedback, encouraging students to take control of their learning and letting students be resources for one another.
Homework which leads students to practice past lessons or prepare future lessons are more effective than those going over today's lesson. Students benefit from feedback. Students with learning disabilities or low motivation may profit from rewards. For younger children, homework helps simple skills, but not broader measures of achievement.
Students with difficulties[32]
Students with genuine difficulties (unrelated to motivation or past instruction) struggle with basic facts, answer impulsively, struggle with mental representations, have poor number sense and have poor short-term memory. Techniques that have been found productive for helping such students include peer-assisted learning, explicit teaching with visual aids, instruction informed by formative assessment and encouraging students to think aloud.
Algebraic reasoning[32]
It is important for elementary school children to spend a long time learning to express algebraic properties without symbols before learning algebraic notation. When learning symbols, many students believe letters always represent unknowns and struggle with the concept of variable. They prefer arithmetic reasoning to algebraic equations for solving word problems. It takes time to move from arithmetic to algebraic generalizations to describe patterns. Students often have trouble with the minus sign and understand the equals sign to mean "the answer is...."


As with other educational research (and the social sciences in general), mathematics education research depends on both quantitative and qualitative studies. Quantitative research includes studies that use inferential statistics to answer specific questions, such as whether a certain teaching method gives significantly better results than the status quo. The best quantitative studies involve randomized trials where students or classes are randomly assigned different methods in order to test their effects. They depend on large samples to obtain statistically significant results.

Qualitative research, such as case studies, action research, discourse analysis, and clinical interviews, depend on small but focused samples in an attempt to understand student learning and to look at how and why a given method gives the results it does. Such studies cannot conclusively establish that one method is better than another, as randomized trials can, but unless it is understood why treatment X is better than treatment Y, application of results of quantitative studies will often lead to "lethal mutations"[29] of the finding in actual classrooms. Exploratory qualitative research is also useful for suggesting new hypotheses, which can eventually be tested by randomized experiments. Both qualitative and quantitative studies therefore are considered essential in education—just as in the other social sciences.[33] Many studies are “mixed”, simultaneously combining aspects of both quantitative and qualitative research, as appropriate.

Randomized trials

There has been some controversy over the relative strengths of different types of research. Because randomized trials provide clear, objective evidence on “what works”, policy makers often take only those studies into consideration. Some scholars have pushed for more random experiments in which teaching methods are randomly assigned to classes.[34][35] In other disciplines concerned with human subjects, like biomedicine, psychology, and policy evaluation, controlled, randomized experiments remain the preferred method of evaluating treatments.[36][37] Educational statisticians and some mathematics educators have been working to increase the use of randomized experiments to evaluate teaching methods.[35] On the other hand, many scholars in educational schools have argued against increasing the number of randomized experiments, often because of philosophical objections, such as the ethical difficulty of randomly assigning students to various treatments when the effects of such treatments are not yet known to be effective,[38] or the difficulty of assuring rigid control of the independent variable in fluid, real school settings.[39]

In the United States, the National Mathematics Advisory Panel (NMAP) published a report in 2008 based on studies, some of which used randomized assignment of treatments to experimental units, such as classrooms or students. The NMAP report's preference for randomized experiments received criticism from some scholars.[40] In 2010, the What Works Clearinghouse (essentially the research arm for the Department of Education) responded to ongoing controversy by extending its research base to include non-experimental studies, including regression discontinuity designs and single-case studies.[41]

Mathematics educators

The following are some of the people who have had a significant influence on the teaching of mathematics at various periods in history:

  • Euclid (fl. 300 BC), Ancient Greek, author of The Elements
  • Felix Klein (1849 - 1925), German mathematician who had substantial influence on math education in the early 20th Century, Inaugural president of the International Commission on Mathematical Instruction
  • Andrei Petrovich Kiselyov (1852 – 1940) Russian and Soviet mathematician. His textbooks on basic arithmetics, algebra and geometry were the standard for Russian classrooms since 1892 well into the 1960s, when Russian mathematics education got embroiled in the New Math reforms. In 2006 these textbooks were re-printed and became popular again.
  • David Eugene Smith (1860 – 1944) American mathematician, educator, and editor, considered one of the founders of the field of mathematics education
  • Tatyana Alexeyevna Afanasyeva (1876–1964), Dutch/Russian mathematician who advocated the use of visual aids and examples for introductory courses in geometry for high school students[42]
  • Robert Lee Moore (1882–1974), American mathematician, originator of the Moore method
  • George Pólya (1887–1985), Hungarian mathematician, author of How to Solve It
  • Georges Cuisenaire (1891–1976), Belgian primary school teacher who invented Cuisenaire rods
  • William Arthur Brownell (1895–1977), American educator who led the movement to make mathematics meaningful to children, often considered the beginning of modern mathematics education
  • Hans Freudenthal (1905–1990), Dutch mathematician who had a profound impact on Dutch education and founded the Freudenthal Institute for Science and Mathematics Education in 1971
  • Caleb Gattegno (1911-1988), Egyptian, Founder of the Association for Teaching Aids in Mathematics in Britain (1952) and founder of the journal Mathematics Teaching.[43]
  • Toru Kumon (1914–1995), Japanese, originator of the Kumon method, based on mastery through exercise
  • Pierre van Hiele and Dina van Hiele-Geldof, Dutch educators (1930s–1950s) who proposed a theory of how children learn geometry (1957), which eventually became very influential worldwide
  • Bob Moses (1935–), founder of the nationwide US Algebra project
  • Robert M. Gagné (1958–1980s), pioneer in mathematics education research.
  • David Tall (1941 - ), most cited mathematics education researcher in modern times.[44] Established the "Advanced Mathematic Thinking" working group. Has contributed to the education and learning process of advanced mathematics.

Mathematics teachers

The following people all taught mathematics at some stage in their lives, although they are better known for other things:


See also

Aspects of mathematics education
North American issues
Mathematical difficulties


  1. Gabrielle Emanuel (23 Jul 2016). "Why We Learn Math Lessons That Date Back 500 Years". National Public Radio.
  2. "Why We Learn Math Lessons That Date Back 500 Years".
  3. William L. Schaaf (1941) A Bibliography of Mathematical Education, Forest Hills, N.Y. : Stevinus Press, link from HathiTrust
  4. Marshall McLuhan (1964) Understanding Media, p.13 "Archived copy". Archived from the original on 2008-12-08. Retrieved 2007-09-04.CS1 maint: archived copy as title (link)
  5. Education, McGraw-Hill (2017-10-20). "5 Approaches to Teaching PreK-12 Numeracy". Inspired Ideas. Retrieved 2019-02-12.
  6. "Euclidean Geometry". Retrieved 2019-02-12.
  7. "Axiomatic Systems". Retrieved 2019-02-12.
  8. "Heuristics". Retrieved 2019-02-12.
  9. "Classical Education and STEM: a Common Misconception". Clapham School. 2018-01-25. Retrieved 2019-02-12.
  10. "Passing Mathematics Just Got Easier For Students With This New Platform: Mathematica - Techzim". Techzim. 2018-06-16. Retrieved 2018-06-19.
  11. "5 Apps to Help All Students with Math". Technology Solutions That Drive Education. 2017-10-13. Retrieved 2018-06-19.
  12. Mosbergen, Dominique (2014-10-22). "This Free App Will Solve Math Problems For You". Huffington Post. Retrieved 2018-06-21.
  13. Ansari, D. (2016, March). No more math wars: an evidence-based, developmental perspective on math education. Education Digest, 81(7), 10–16. Retrieved from
  14. Stokke, Anna (2015). What to Do about Canada's Declining Math Scores. Toronto, Ontario: C.D. Howe Institute. pp. 4–5. ISBN 9780888069498.
  15. Sriraman, Bharath (2012). Crossroads in the History of Mathematics and Mathematics Education. Monograph Series in Mathematics Education. 12. IAP. ISBN 978-1-61735-704-6.
  16. Singmaster, David (7 September 1993). "The Unreasonable Utility of Recreational Mathematics". For First European Congress of Mathematics, Paris, July, 1992.
  17. "Archived copy". Archived from the original on 2011-11-20. Retrieved 2011-11-29.CS1 maint: archived copy as title (link)
  18. "Foundations for Success: The Final Report of the National Mathematics Advisory Panel" (PDF). U.S. Department of Education. 2008. p. 20.
  19. "Archived copy". Archived from the original on 2014-07-14. Retrieved 2014-06-18.CS1 maint: archived copy as title (link)
  20. "Mathematics for Computer Science". MIT OpenCourseWare.
  21. "Mathematics curriculum". UK Department of Education. 17 January 2013.
  22. Ma, X. (2000). "A longitudinal assessment of antecedent course work in mathematics and subsequent mathematical attainment". Journal of Educational Research. 94 (1): 16–29. doi:10.1080/00220670009598739.
  23. "Myths vs. Facts - Common Core State Standards Initiative".
  24. "Standards in Your State - Common Core State Standards Initiative".
  25. "MoCTM - Home".
  26. "What is PISA?". OECD. 2018.
  27. Lockheed, Marlaine (2015). The Experience of Middle-Income Countries Participating in PISA 2000. PISA. France: OECD Publishing. p. 30. ISBN 978-92-64-24618-8.
  28. Sellar, S., & Lingard, B., Sam; Lingard, Bob (April 2018). "International large-scale assessments, affective worlds and policy impacts in education" (PDF). International Journal of Qualitative Studies in Education. 31 (5): 367–381. doi:10.1080/09518398.2018.1449982.CS1 maint: multiple names: authors list (link)
  29. Hiebert, James; Grouws, Douglas (2007), "9", The Effects of Classroom Mathematics Teaching on Students' Learning, 1, Reston VA: National Council of Teachers of Mathematics, pp. 371–404
  30. Institute of Education Sciences, ed. (2003), "Highlights From the TIMSS 1999 Video Study of Eighth-Grade Mathematics Teaching", Trends in International Mathematics and Science Study (TIMSS) - Overview, U.S. Department of Education
  31. Black, P.; Wiliam, Dylan (1998). "Assessment and Classroom Learning" (PDF). Assessment in Education. 5 (1): 7–74. doi:10.1080/0969595980050102.
  32. "Research clips and briefs".
  33. Raudenbush, Stephen (2005). "Learning from Attempts to Improve Schooling: The Contribution of Methodological Diversity". Educational Researcher. 34 (5): 25–31. CiteSeerX doi:10.3102/0013189X034005025.
  34. Cook, Thomas D. (2002). "Randomized Experiments in Educational Policy Research: A Critical Examination of the Reasons the Educational Evaluation Community has Offered for Not Doing Them". Educational Evaluation and Policy Analysis. 24 (3): 175–199. doi:10.3102/01623737024003175.
  35. Working Group on Statistics in Mathematics Education Research (2007). "Using Statistics Effectively in Mathematics Education Research: A report from a series of workshops organized by the American Statistical Association with funding from the National Science Foundation" (PDF). The American Statistical Association.
  36. Shadish, William R.; Cook, Thomas D.; Campbell, Donald T. (2002). Experimental and quasi-experimental designs for generalized causal inference (2nd ed.). Boston: Houghton Mifflin. ISBN 978-0-395-61556-0.
  37. See articles on NCLB, National Mathematics Advisory Panel, Scientifically based research and What Works Clearinghouse
  38. Mosteller, Frederick; Boruch, Robert (2002), Evidence Matters: Randomized Trials in Education Research, Brookings Institution Press
  39. Chatterji, Madhabi (December 2004). "Evidence on "What Works": An Argument for Extended-Term Mixed-Method (ETMM) Evaluation Designs". Educational Researcher. 33 (9): 3–13. doi:10.3102/0013189x033009003.
  40. Kelly, Anthony (2008). "Reflections on the National Mathematics Advisory Panel Final Report". Educational Researcher. 37 (9): 561–4. doi:10.3102/0013189X08329353. This is the introductory article to an issue devoted to this debate on report of the National Mathematics Advisory Panel, particularly on its use of randomized experiments.
  41. Sparks, Sarah (October 20, 2010). "Federal Criteria For Studies Grow". Education Week. p. 1.
  42. Ehrenfest-Afanassjewa, Tatjana (March 2003) [1931]. "Exercises in Experimental Geometry" (PDF). Hoeschsmann, Klaus (translator).
  43. "Introduction to Caleb Gattegno". The Association For The Science of Education. Retrieved 25 October 2013.
  44. Gutiérrez, Angel; Boero, Paolo (2006). Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future. Sense Publishers. ISBN 9789077874196.
  45. Cajori, Florian (October 1910). "Attempts made during the eighteenth and nineteenth centuries to reform the teaching of geometry". American Mathematical Monthly. 17 (10): 181–201. doi:10.2307/2973645. JSTOR 2973645.
  46. "Freddie Mercury Interview". Melody Maker. 2 May 1981. Archived from the original on 7 February 2007. Retrieved 20 October 2006.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.