Material failure theory
Failure theory is the science of predicting the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions (such as temperature, state of stress, loading rate) most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile. Though failure theory has been in development for over 200 years, its level of acceptability is yet to reach that of continuum mechanics.
Continuum mechanics  

Laws


In mathematical terms, failure theory is expressed in the form of various failure criteria which are valid for specific materials. Failure criteria are functions in stress or strain space which separate "failed" states from "unfailed" states. A precise physical definition of a "failed" state is not easily quantified and several working definitions are in use in the engineering community. Quite often, phenomenological failure criteria of the same form are used to predict brittle failure and ductile yields.
Material failure
In materials science, material failure is the loss of load carrying capacity of a material unit. This definition introduces to the fact that material failure can be examined in different scales, from microscopic, to macroscopic. In structural problems, where the structural response may be beyond the initiation of nonlinear material behaviour, material failure is of profound importance for the determination of the integrity of the structure. On the other hand, due to the lack of globally accepted fracture criteria, the determination of the structure's damage, due to material failure, is still under intensive research.
Types of material failure
Material failure can be distinguished in two broader categories depending on the scale in which the material is examined:
Microscopic failure
Microscopic material failure is defined in terms of crack initiation and propagation. Such methodologies are useful for gaining insight in the cracking of specimens and simple structures under well defined global load distributions. Microscopic failure considers the initiation and propagation of a crack. Failure criteria in this case are related to microscopic fracture. Some of the most popular failure models in this area are the micromechanical failure models, which combine the advantages of continuum mechanics and classical fracture mechanics.[1] Such models are based on the concept that during plastic deformation, microvoids nucleate and grow until a local plastic neck or fracture of the intervoid matrix occurs, which causes the coalescence of neighbouring voids. Such a model, proposed by Gurson and extended by Tvergaard and Needleman, is known as GTN. Another approach, proposed by Rousselier, is based on continuum damage mechanics (CDM) and thermodynamics. Both models form a modification of the von Mises yield potential by introducing a scalar damage quantity, which represents the void volume fraction of cavities, the porosity f.
Macroscopic failure
Macroscopic material failure is defined in terms of load carrying capacity or energy storage capacity, equivalently. Li[2] presents a classification of macroscopic failure criteria in four categories:
 Stress or strain failure
 Energy type failure (Scriterion, Tcriterion)
 Damage failure
 Empirical failure
Five general levels are considered, at which the meaning of deformation and failure is interpreted differently: the structural element scale, the macroscopic scale where macroscopic stress and strain are defined, the mesoscale which is represented by a typical void, the microscale and the atomic scale. The material behavior at one level is considered as a collective of its behavior at a sublevel. An efficient deformation and failure model should be consistent at every level.
Brittle material failure criteria
Failure of brittle materials can be determined using several approaches:
 Phenomenological failure criteria
 Linear elastic fracture mechanics
 Elasticplastic fracture mechanics
 Energybased methods
 Cohesive zone methods
Phenomenological failure criteria
The failure criteria that were developed for brittle solids were the maximum stress/strain criteria. The maximum stress criterion assumes that a material fails when the maximum principal stress in a material element exceeds the uniaxial tensile strength of the material. Alternatively, the material will fail if the minimum principal stress is less than the uniaxial compressive strength of the material. If the uniaxial tensile strength of the material is and the uniaxial compressive strength is , then the safe region for the material is assumed to be
Note that the convention that tension is positive has been used in the above expression.
The maximum strain criterion has a similar form except that the principal strains are compared with experimentally determined uniaxial strains at failure, i.e.,
The maximum principal stress and strain criteria continue to be widely used in spite of severe shortcomings.
Numerous other phenomenological failure criteria can be found in the engineering literature. The degree of success of these criteria in predicting failure has been limited. For brittle materials, some popular failure criteria are:
 criteria based on invariants of the Cauchy stress tensor
 the Tresca or maximum shear stress failure criterion
 the von Mises or maximum elastic distortional energy criterion
 the MohrCoulomb failure criterion for cohesivefrictional solids
 the DruckerPrager failure criterion for pressuredependent solids
 the BreslerPister failure criterion for concrete
 the WillamWarnke failure criterion for concrete
 the Hankinson criterion, an empirical failure criterion that is used for orthotropic materials such as wood
 the Hill yield criteria for anisotropic solids
 the TsaiWu failure criterion for anisotropic composites
 the Johnson–Holmquist damage model for highrate deformations of isotropic solids
 the HoekBrown failure criterion for rock masses
 the CamClay failure theory for soil
Linear elastic fracture mechanics
The approach taken in linear elastic fracture mechanics is to estimate the amount of energy needed to grow a preexisting crack in a brittle material. The earliest fracture mechanics approach for unstable crack growth is Griffiths' theory.[3] When applied to the mode I opening of a crack, Griffiths' theory predicts that the critical stress () needed to propagate the crack is given by
where is the Young's modulus of the material, is the surface energy per unit area of the crack, and is the crack length for edge cracks or is the crack length for plane cracks. The quantity is postulated as a material parameter called the fracture toughness. The mode I fracture toughness for plane strain is defined as
where is a critical value of the far field stress and is a dimensionless factor that depends on the geometry, material properties, and loading condition. The quantity is related to the stress intensity factor and is determined experimentally. Similar quantities and can be determined for mode II and model III loading conditions.
The state of stress around cracks of various shapes can be expressed in terms of their stress intensity factors. Linear elastic fracture mechanics predicts that a crack will extend when the stress intensity factor at the crack tip is greater than the fracture toughness of the material. Therefore, the critical applied stress can also be determined once the stress intensity factor at a crack tip is known.
Energybased methods
The linear elastic fracture mechanics method is difficult to apply for anisotropic materials (such as composites) or for situations where the loading or the geometry are complex. The strain energy release rate approach has proved quite useful for such situations. The strain energy release rate for a mode I crack which runs through the thickness of a plate is defined as
where is the applied load, is the thickness of the plate, is the displacement at the point of application of the load due to crack growth, and is the crack length for edge cracks or is the crack length for plane cracks. The crack is expected to propagate when the strain energy release rate exceeds a critical value  called the critical strain energy release rate.
The fracture toughness and the critical strain energy release rate for plane stress are related by
where is the Young's modulus. If an initial crack size is known, then a critical stress can be determined using the strain energy release rate criterion.
Ductile material failure criteria
Criteria used to predict the failure of ductile materials are usually called yield criteria. Commonly used failure criteria for ductile materials are:
 the Tresca or maximum shear stress criterion
 the von Mises yield criterion or distortional strain energy density criterion
 the Gurson yield criterion for pressuredependent metals
 the Hosford yield criterion for metals
 the Hill yield criteria
 various criteria based on the invariants of the Cauchy stress tensor
The yield surface of a ductile material usually changes as the material experiences increased deformation. Models for the evolution of the yield surface with increasing strain, temperature, and strain rate are used in conjunction with the above failure criteria for isotropic hardening, kinematic hardening, and viscoplasticity. Some such models are:
 the JohnsonCook model
 the SteinbergGuinan model
 the ZerilliArmstrong model
 the Mechanical threshold stress model
 the PrestonTonksWallace model
There is another important aspect to ductile materials  the prediction of the ultimate failure strength of a ductile material. Several models for predicting the ultimate strength have been used by the engineering community with varying levels of success. For metals, such failure criteria are usually expressed in terms of a combination of porosity and strain to failure or in terms of a damage parameter.
See also
References
 Besson J., Steglich D., Brocks W. (2003), Modelling of plain strain ductile rupture, International Journal of Plasticity, 19.
 Li, Q.M. (2001), Strain energy density failure criterion, International Journal of Solids and Structures 38, pp. 6997–7013.
 Griffiths,A.A. 1920. The theory of rupture and flow in solids. Phil.Trans.Roy.Soc.Lond. A221, 163.