Malcev-admissible algebra

In algebra, a Malcev-admissible algebra, introduced by Myung (1983), is a (possibly non-associative) algebra that becomes a Malcev algebra under the bracket [a,b] = ab  ba. Examples include associative algebras, Lie-admissible algebras, and Okubo algebras.

See also


  • Albert, A. Adrian (1948), "Power-associative rings", Transactions of the American Mathematical Society, 64: 552–593, doi:10.2307/1990399, JSTOR 1990399, MR 0027750
  • Hazewinkel, Michiel, ed. (2001) [1994], "Lie-admissible_algebra", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  • Myung, Hyo Chul (1980), "Flexible Malʹcev-admissible algebras", Hadronic Journal, 4 (6): 2033–2136, MR 0637500
  • Myung, Hyo Chul (1986), Malcev-admissible algebras, Progress in Mathematics, 64, Boston, MA: Birkhäuser Boston, doi:10.1007/978-1-4899-6661-2, ISBN 0-8176-3345-6, MR 0885089
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.