List of unsolved problems in mathematics

Since the Renaissance, every century has seen the solution of more mathematical problems than the century before, yet many mathematical problems, both major and minor, still remain unsolved.[1] These unsolved problems occur in multiple domains, including physics, computer science, algebra, analysis, combinatorics, algebraic, discrete and Euclidean geometries, graph, group, model, number, set and Ramsey theories, dynamical systems, partial differential equations, and more. Some problems may belong to more than one discipline of mathematics and be studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and lists of unsolved problems (such as the list of Millennium Prize Problems) receive considerable attention.

Lists of unsolved problems in mathematics

Over the course of time, several lists of unsolved mathematical problems have appeared.

ListNumber of problemsNumber unresolved
or incompletely resolved
Proposed byProposed in
Hilbert's problems[2]2315David Hilbert1900
Landau's problems[3]44Edmund Landau1912
Taniyama's problems[4]36-Yutaka Taniyama1955
Thurston's 24 questions[5][6]24-William Thurston1982
Smale's problems1814Stephen Smale1998
Millennium Prize problems76[7]Clay Mathematics Institute2000
Simon problems15<12[8][9]Barry Simon2000
Unsolved Problems on Mathematics for the 21st Century[10]22-Jair Minoro Abe, Shotaro Tanaka2001
DARPA's math challenges[11][12]23-DARPA2007

Millennium Prize Problems

Of the original seven Millennium Prize Problems set by the Clay Mathematics Institute in 2000, six have yet to be solved as of 2019:[7]

The seventh problem, the Poincaré conjecture, has been solved.[13] The smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is still unsolved.[14]

Unsolved problems


Algebraic geometry



Differential geometry

Discrete geometry

Euclidean geometry

Dynamical systems

Games and puzzles

Combinatorial games

Games with imperfect information

Graph theory

Paths and cycles in graphs

Graph coloring and labeling

Graph drawing

Word-representation of graphs

  • Characterise (non-)word-representable planar graphs
  • Characterise word-representable near-triangulations containing the complete graph K4 (such a characterisation is known for K4-free planar graphs [92])
  • Classify graphs with representation number 3, that is, graphs that can be represented using 3 copies of each letter, but cannot be represented using 2 copies of each letter
  • Is the line graph of a non-word-representable graph always non-word-representable?
  • Are there any graphs on n vertices whose representation requires more than floor(n/2) copies of each letter?
  • Is it true that out of all bipartite graphs crown graphs require longest word-representants?
  • Characterise word-representable graphs in terms of (induced) forbidden subgraphs.
  • Which (hard) problems on graphs can be translated to words representing them and solved on words (efficiently)?

Miscellaneous graph theory

Group theory

Model theory and formal languages

  • Vaught's conjecture
  • The Cherlin–Zilber conjecture: A simple group whose first-order theory is stable in is a simple algebraic group over an algebraically closed field.
  • The Main Gap conjecture, e.g. for uncountable first order theories, for AECs, and for -saturated models of a countable theory.[109]
  • Determine the structure of Keisler's order[110][111]
  • The stable field conjecture: every infinite field with a stable first-order theory is separably closed.
  • Is the theory of the field of Laurent series over decidable? of the field of polynomials over ?
  • (BMTO) Is the Borel monadic theory of the real order decidable? (MTWO) Is the monadic theory of well-ordering consistently decidable?[112]
  • The Stable Forking Conjecture for simple theories[113]
  • For which number fields does Hilbert's tenth problem hold?
  • Assume K is the class of models of a countable first order theory omitting countably many types. If K has a model of cardinality does it have a model of cardinality continuum?[114]
  • Shelah's eventual categoricity conjecture: For every cardinal there exists a cardinal such that If an AEC K with LS(K)<= is categorical in a cardinal above then it is categorical in all cardinals above .[109][115]
  • Shelah's categoricity conjecture for : If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.[109]
  • Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?[116]
  • If the class of atomic models of a complete first order theory is categorical in the , is it categorical in every cardinal?[117][118]
  • Is every infinite, minimal field of characteristic zero algebraically closed? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.)
  • Kueker's conjecture[119]
  • Does there exist an o-minimal first order theory with a trans-exponential (rapid growth) function?
  • Does a finitely presented homogeneous structure for a finite relational language have finitely many reducts?
  • Do the Henson graphs have the finite model property?
  • The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?[120]
  • The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?[121]
  • Generalized star height problem

Number theory


Additive number theory

Algebraic number theory

Computational number theory

Prime numbers

Partial differential equations

Ramsey theory

Set theory


Problems solved since 1995

See also


  1. Eves, An Introduction to the History of Mathematics 6th Edition, Thomson, 1990, ISBN 978-0-03-029558-4.
  2. Thiele, Rüdiger (2005), "On Hilbert and his twenty-four problems", in Van Brummelen, Glen (ed.), Mathematics and the historian's craft. The Kenneth O. May Lectures, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 21, pp. 243–295, ISBN 978-0-387-25284-1
  3. Guy, Richard (1994), Unsolved Problems in Number Theory (2nd ed.), Springer, p. vii, ISBN 978-1-4899-3585-4, archived from the original on 2019-03-23, retrieved 2016-09-22.
  4. Shimura, G. (1989). "Yutaka Taniyama and his time". Bulletin of the London Mathematical Society. 21 (2): 186–196. doi:10.1112/blms/21.2.186. Archived from the original on 2016-01-25. Retrieved 2015-01-15.
  5. "Archived copy" (PDF). Archived (PDF) from the original on 2016-02-08. Retrieved 2016-01-22.CS1 maint: archived copy as title (link)
  6. "THREE DIMENSIONAL MANIFOLDS, KLEINIAN GROUPS AND HYPERBOLIC GEOMETRY" (PDF). Archived (PDF) from the original on 2016-04-10. Retrieved 2016-02-09.
  7. "Millennium Problems". Archived from the original on 2017-06-06. Retrieved 2015-01-20.
  8. "Fields Medal awarded to Artur Avila". Centre national de la recherche scientifique. 2014-08-13. Archived from the original on 2018-07-10. Retrieved 2018-07-07.
  9. Bellos, Alex (2014-08-13). "Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained". The Guardian. Archived from the original on 2016-10-21. Retrieved 2018-07-07.
  10. Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBN 978-9051994902.
  11. "DARPA invests in math". CNN. 2008-10-14. Archived from the original on 2009-03-04. Retrieved 2013-01-14.
  12. "Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. Archived from the original on 2012-10-01. Retrieved 2013-06-25.
  13. "Poincaré Conjecture". Clay Mathematics Institute. Archived from the original on 2013-12-15.
  14. "Smooth 4-dimensional Poincare conjecture". Archived from the original on 2018-01-25. Retrieved 2019-08-06.
  15. Dnestrovskaya notebook (PDF) (in Russian), The Russian Academy of Sciences, 1993
    "Dneister Notebook: Unsolved Problems in the Theory of Rings and Modules" (PDF), University of Saskatchewan, retrieved 2019-08-15
  16. Erlagol notebook (PDF) (in Russian), The Novosibirsk State University, 2018
  17. Barlet, Daniel; Peternell, Thomas; Schneider, Michael (1990). "On two conjectures of Hartshorne's". Mathematische Annalen. 286 (1–3): 13–25. doi:10.1007/BF01453563.
  18. Maulik, Davesh; Nekrasov, Nikita; Okounov, Andrei; Pandharipande, Rahul (2004-06-05), Gromov–Witten theory and Donaldson–Thomas theory, I, arXiv:math/0312059
  19. Zariski, Oscar (1971). "Some open questions in the theory of singularities". Bulletin of the American Mathematical Society. 77 (4): 481–491. doi:10.1090/S0002-9904-1971-12729-5. MR 0277533.
  20. Waldschmidt, Michel (2013), Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables, Springer, pp. 14, 16, ISBN 9783662115695
  21. Smyth, Chris (2008), "The Mahler measure of algebraic numbers: a survey", in McKee, James; Smyth, Chris (eds.), Number Theory and Polynomials, London Mathematical Society Lecture Note Series, 352, Cambridge University Press, pp. 322–349, ISBN 978-0-521-71467-9
  22. Berenstein, Carlos A. (2001) [1994], "Pompeiu problem", in Hazewinkel, Michiel (ed.), Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  23. For background on the numbers that are the focus of this problem, see articles by Eric W. Weisstein, on pi ( Archived 2014-12-06 at the Wayback Machine), e ( Archived 2014-11-21 at the Wayback Machine), Khinchin's Constant ( Archived 2014-11-05 at the Wayback Machine), irrational numbers ( Archived 2015-03-27 at the Wayback Machine), transcendental numbers ( Archived 2014-11-13 at the Wayback Machine), and irrationality measures ( Archived 2015-04-21 at the Wayback Machine) at Wolfram MathWorld, all articles accessed 15 December 2014.
  24. Michel Waldschmidt, 2008, "An introduction to irrationality and transcendence methods," at The University of Arizona The Southwest Center for Arithmetic Geometry 2008 Arizona Winter School, March 15–19, 2008 (Special Functions and Transcendence), see Archived 2014-12-16 at the Wayback Machine, accessed 15 December 2014.
  25. John Albert, posting date unknown, "Some unsolved problems in number theory" [from Victor Klee & Stan Wagon, "Old and New Unsolved Problems in Plane Geometry and Number Theory"], in University of Oklahoma Math 4513 course materials, see Archived 2014-01-17 at the Wayback Machine, accessed 15 December 2014.
  26. Kung, H. T.; Traub, Joseph Frederick (1974), "Optimal order of one-point and multipoint iteration", Journal of the ACM, 21 (4): 643–651, doi:10.1145/321850.321860
  27. Bruhn, Henning; Schaudt, Oliver (2015), "The journey of the union-closed sets conjecture" (PDF), Graphs and Combinatorics, 31 (6): 2043–2074, arXiv:1309.3297, doi:10.1007/s00373-014-1515-0, MR 3417215, archived (PDF) from the original on 2017-08-08, retrieved 2017-07-18
  28. Tao, Terence (2017), "Some remarks on the lonely runner conjecture", arXiv:1701.02048 [math.CO]
  29. Singmaster, D. (1971), "Research Problems: How often does an integer occur as a binomial coefficient?", American Mathematical Monthly, 78 (4): 385–386, doi:10.2307/2316907, JSTOR 2316907, MR 1536288.
  30. Liśkiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke (2003-07-28). "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes". Theoretical Computer Science. 304 (1): 129–156. doi:10.1016/S0304-3975(03)00080-X.
  31. Brightwell, Graham R.; Felsner, Stefan; Trotter, William T. (1995), "Balancing pairs and the cross product conjecture", Order, 12 (4): 327–349, CiteSeerX, doi:10.1007/BF01110378, MR 1368815.
  32. Murnaghan, F. D. (1938), "The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups", American Journal of Mathematics, 60 (1): 44–65, doi:10.2307/2371542, JSTOR 2371542, MR 1507301, PMC 1076971, PMID 16577800
  33. Katz, Mikhail G. (2007), Systolic geometry and topology, Mathematical Surveys and Monographs, 137, American Mathematical Society, Providence, RI, p. 57, doi:10.1090/surv/137, ISBN 978-0-8218-4177-8, MR 2292367
  34. Rosenberg, Steven (1997), The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds, London Mathematical Society Student Texts, 31, Cambridge: Cambridge University Press, pp. 62–63, doi:10.1017/CBO9780511623783, ISBN 978-0-521-46300-3, MR 1462892
  35. Barros, Manuel (1997), "General Helices and a Theorem of Lancret", Proceedings of the American Mathematical Society, 125 (5): 1503–1509, doi:10.1090/S0002-9939-97-03692-7, JSTOR 2162098
  36. Morris, Walter D.; Soltan, Valeriu (2000), "The Erdős-Szekeres problem on points in convex position—a survey", Bull. Amer. Math. Soc., 37 (4): 437–458, doi:10.1090/S0273-0979-00-00877-6, MR 1779413; Suk, Andrew (2016), "On the Erdős–Szekeres convex polygon problem", J. Amer. Math. Soc., 30 (4): 1047–1053, arXiv:1604.08657, doi:10.1090/jams/869
  37. Dey, Tamal K. (1998), "Improved bounds for planar k-sets and related problems", Discrete Comput. Geom., 19 (3): 373–382, doi:10.1007/PL00009354, MR 1608878; Tóth, Gábor (2001), "Point sets with many k-sets", Discrete Comput. Geom., 26 (2): 187–194, doi:10.1007/s004540010022, MR 1843435.
  38. Boltjansky, V.; Gohberg, I. (1985), "11. Hadwiger's Conjecture", Results and Problems in Combinatorial Geometry, Cambridge University Press, pp. 44–46.
  39. Weisstein, Eric W. "Kobon Triangle". MathWorld.
  40. Matoušek, Jiří (2002), Lectures on discrete geometry, Graduate Texts in Mathematics, 212, Springer-Verlag, New York, p. 206, doi:10.1007/978-1-4613-0039-7, ISBN 978-0-387-95373-1, MR 1899299
  41. Aronov, Boris; Dujmović, Vida; Morin, Pat; Ooms, Aurélien; Schultz Xavier da Silveira, Luís Fernando (2019), "More Turán-type theorems for triangles in convex point sets", Electronic Journal of Combinatorics, 26 (1): P1.8, arXiv:1706.10193, Bibcode:2017arXiv170610193A, archived from the original on 2019-02-18, retrieved 2019-02-18
  42. Gardner, Martin (1995), New Mathematical Diversions (Revised Edition), Washington: Mathematical Association of America, p. 251
  43. Brass, Peter; Moser, William; Pach, János (2005), Research Problems in Discrete Geometry, New York: Springer, p. 45, ISBN 978-0387-23815-9, MR 2163782
  44. Conway, John H.; Neil J.A. Sloane (1999), Sphere Packings, Lattices and Groups (3rd ed.), New York: Springer-Verlag, pp. 21–22, ISBN 978-0-387-98585-5
  45. Brass, Peter; Moser, William; Pach, János (2005), "5.1 The Maximum Number of Unit Distances in the Plane", Research problems in discrete geometry, Springer, New York, pp. 183–190, ISBN 978-0-387-23815-9, MR 2163782
  46. Finch, S. R.; Wetzel, J. E. (2004), "Lost in a forest", American Mathematical Monthly, 11 (8): 645–654, doi:10.2307/4145038, JSTOR 4145038, MR 2091541
  47. Solomon, Yaar; Weiss, Barak (2016), "Dense forests and Danzer sets", Annales Scientifiques de l'École Normale Supérieure, 49 (5): 1053–1074, arXiv:1406.3807, doi:10.24033/asens.2303, MR 3581810; Conway, John H., Five $1,000 Problems (Update 2017) (PDF), On-Line Encyclopedia of Integer Sequences, archived (PDF) from the original on 2019-02-13, retrieved 2019-02-12
  48. Brandts, Jan; Korotov, Sergey; Křížek, Michal; Šolc, Jakub (2009), "On nonobtuse simplicial partitions" (PDF), SIAM Review, 51 (2): 317–335, Bibcode:2009SIAMR..51..317B, doi:10.1137/060669073, MR 2505583, archived (PDF) from the original on 2018-11-04, retrieved 2018-11-22. See in particular Conjecture 23, p. 327.
  49. Socolar, Joshua E. S.; Taylor, Joan M. (2012), "Forcing nonperiodicity with a single tile", The Mathematical Intelligencer, 34 (1): 18–28, arXiv:1009.1419, doi:10.1007/s00283-011-9255-y, MR 2902144
  50. Melissen, Hans (1993), "Densest packings of congruent circles in an equilateral triangle", American Mathematical Monthly, 100 (10): 916–925, doi:10.2307/2324212, JSTOR 2324212, MR 1252928
  51. Arutyunyants, G.; Iosevich, A. (2004), "Falconer conjecture, spherical averages and discrete analogs", in Pach, János (ed.), Towards a Theory of Geometric Graphs, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, pp. 15–24, doi:10.1090/conm/342/06127, ISBN 9780821834848, MR 2065249
  52. Matschke, Benjamin (2014), "A survey on the square peg problem", Notices of the American Mathematical Society, 61 (4): 346–352, doi:10.1090/noti1100
  53. Katz, Nets; Tao, Terence (2002), "Recent progress on the Kakeya conjecture", Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publicacions Matemàtiques (Vol. Extra): 161–179, CiteSeerX, doi:10.5565/PUBLMAT_Esco02_07, MR 1964819
  54. Weaire, Denis, ed. (1997), The Kelvin Problem, CRC Press, p. 1, ISBN 9780748406326
  55. Brass, Peter; Moser, William; Pach, János (2005), Research problems in discrete geometry, New York: Springer, p. 457, ISBN 9780387299297, MR 2163782
  56. Norwood, Rick; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", Discrete and Computational Geometry, 7 (2): 153–162, doi:10.1007/BF02187832, MR 1139077
  57. Wagner, Neal R. (1976), "The Sofa Problem" (PDF), The American Mathematical Monthly, 83 (3): 188–189, doi:10.2307/2977022, JSTOR 2977022, archived (PDF) from the original on 2015-04-20, retrieved 2014-05-14
  58. Demaine, Erik D.; O'Rourke, Joseph (2007), "Chapter 22. Edge Unfolding of Polyhedra", Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, pp. 306–338
  59. Ghomi, Mohammad (2018-01-01). "D "urer's Unfolding Problem for Convex Polyhedra". Notices of the American Mathematical Society. 65 (01): 25–27. doi:10.1090/noti1609. ISSN 0002-9920.
  60. Whyte, L. L. (1952), "Unique arrangements of points on a sphere", The American Mathematical Monthly, 59 (9): 606–611, doi:10.2307/2306764, JSTOR 2306764, MR 0050303
  61. ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, archived from the original on October 5, 2016, retrieved 2016-10-04.
  62. Bereg, Sergey; Dumitrescu, Adrian; Jiang, Minghui (2010), "On covering problems of Rado", Algorithmica, 57 (3): 538–561, doi:10.1007/s00453-009-9298-z, MR 2609053
  63. Kari, Jarkko (2009), "Structure of reversible cellular automata", Unconventional Computation: 8th International Conference, UC 2009, Ponta Delgada, Portugal, September 7ÔÇô11, 2009, Proceedings, Lecture Notes in Computer Science, 5715, Springer, p. 6, Bibcode:2009LNCS.5715....6K, doi:10.1007/978-3-642-03745-0_5, ISBN 978-3-642-03744-3
  64. Kaloshin, Vadim; Sorrentino, Alfonso (2018). "On the local Birkhoff conjecture for convex billiards". Annals of Mathematics. 188 (1): 315–380. arXiv:1612.09194. doi:10.4007/annals.2018.188.1.6.
  65. Sarnak, Peter (2011), "Recent progress on the quantum unique ergodicity conjecture", Bulletin of the American Mathematical Society, 48 (2): 211–228, doi:10.1090/S0273-0979-2011-01323-4, MR 2774090
  66. Archived 2017-11-10 at the Wayback Machine Ten open questions about Sudoku (2012-01-21).
  67. "Higher-Dimensional Tic-Tac-Toe". PBS Infinite Series. YouTube. 2017-09-21. Archived from the original on 2017-10-11. Retrieved 2018-07-29.
  68. Florek, Jan (2010), "On Barnette's conjecture", Discrete Mathematics, 310 (10–11): 1531–1535, doi:10.1016/j.disc.2010.01.018, MR 2601261.
  69. Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014), "On toughness and Hamiltonicity of $2K_2$-free graphs", Journal of Graph Theory, 75 (3): 244–255, doi:10.1002/jgt.21734, MR 3153119
  70. Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, 27, pp. 1–12, doi:10.1016/S0304-0208(08)72993-1, ISBN 9780444878038.
  71. Heckman, Christopher Carl; Krakovski, Roi (2013), "Erdös-Gyárfás conjecture for cubic planar graphs", Electronic Journal of Combinatorics, 20 (2), P7, archived from the original on 2016-10-06, retrieved 2016-09-22.
  72. Akiyama, Jin; Exoo, Geoffrey; Harary, Frank (1981), "Covering and packing in graphs. IV. Linear arboricity", Networks, 11 (1): 69–72, doi:10.1002/net.3230110108, MR 0608921.
  73. L. Babai, Automorphism groups, isomorphism, reconstruction Archived 2007-06-13 at the Wayback Machine, in Handbook of Combinatorics, Vol. 2, Elsevier, 1996, 1447–1540.
  74. Lenz, Hanfried; Ringel, Gerhard (1991), "A brief review on Egmont Köhler's mathematical work", Discrete Mathematics, 97 (1–3): 3–16, doi:10.1016/0012-365X(91)90416-Y, MR 1140782
  75. Bousquet, Nicolas; Bartier, Valentin (2019), "Linear Transformations Between Colorings in Chordal Graphs", in Bender, Michael A.; Svensson, Ola; Herman, Grzegorz (eds.), 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, LIPIcs, 144, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 24:1–24:15, doi:10.4230/LIPIcs.ESA.2019.24
  76. Chung, Fan; Graham, Ron (1998), Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, pp. 97–99.
  77. Chudnovsky, Maria; Seymour, Paul (2014), "Extending the Gyárfás-Sumner conjecture", Journal of Combinatorial Theory, Series B, 105: 11–16, doi:10.1016/j.jctb.2013.11.002, MR 3171779
  78. Toft, Bjarne (1996), "A survey of Hadwiger's conjecture", Congressus Numerantium, 115: 249–283, MR 1411244.
  79. Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991), Unsolved Problems in Geometry, Springer-Verlag, Problem G10.
  80. Hägglund, Jonas; Steffen, Eckhard (2014), "Petersen-colorings and some families of snarks", Ars Mathematica Contemporanea, 7 (1): 161–173, doi:10.26493/1855-3974.288.11a, MR 3047618, archived from the original on 2016-10-03, retrieved 2016-09-30.
  81. Jensen, Tommy R.; Toft, Bjarne (1995), "12.20 List-Edge-Chromatic Numbers", Graph Coloring Problems, New York: Wiley-Interscience, pp. 201–202, ISBN 978-0-471-02865-9.
  82. Huang, C.; Kotzig, A.; Rosa, A. (1982), "Further results on tree labellings", Utilitas Mathematica, 21: 31–48, MR 0668845.
  83. Molloy, Michael; Reed, Bruce (1998), "A bound on the total chromatic number", Combinatorica, 18 (2): 241–280, CiteSeerX, doi:10.1007/PL00009820, MR 1656544.
  84. Barát, János; Tóth, Géza (2010), "Towards the Albertson Conjecture", Electronic Journal of Combinatorics, 17 (1): R73, arXiv:0909.0413, Bibcode:2009arXiv0909.0413B, archived from the original on 2012-02-24, retrieved 2016-10-04.
  85. Wood, David (January 19, 2009), "Book Thickness of Subdivisions", Open Problem Garden, archived from the original on September 16, 2013, retrieved 2013-02-05.
  86. Fulek, R.; Pach, J. (2011), "A computational approach to Conway's thrackle conjecture", Computational Geometry, 44 (6–7): 345–355, arXiv:1002.3904, doi:10.1007/978-3-642-18469-7_21, MR 2785903.
  87. Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN 978-0-486-31552-2, MR 2047103, archived from the original on 2017-03-01, retrieved 2016-10-28.
  88. Hliněný, Petr (2010), "20 years of Negami's planar cover conjecture" (PDF), Graphs and Combinatorics, 26 (4): 525–536, CiteSeerX, doi:10.1007/s00373-010-0934-9, MR 2669457, archived (PDF) from the original on 2016-03-04, retrieved 2016-10-04.
  89. Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016), "On self-approaching and increasing-chord drawings of 3-connected planar graphs", Journal of Computational Geometry, 7 (1): 47–69, arXiv:1409.0315, doi:10.20382/jocg.v7i1a3, MR 3463906
  90. Pach, János; Sharir, Micha (2009), "5.1 Crossings—the Brick Factory Problem", Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures, Mathematical Surveys and Monographs, 152, American Mathematical Society, pp. 126–127.
  91. Demaine, E.; O'Rourke, J. (2002–2012), "Problem 45: Smallest Universal Set of Points for Planar Graphs", The Open Problems Project, archived from the original on 2012-08-14, retrieved 2013-03-19.
  92. M. Glen. Colourability and word-representability of near-triangulations, Pure and Applied Mathematics, to appear, 2019.
  93. Conway, John H., Five $1,000 Problems (Update 2017) (PDF), Online Encyclopedia of Integer Sequences, archived (PDF) from the original on 2019-02-13, retrieved 2019-02-12
  94. Chudnovsky, Maria (2014), "The Erdös–Hajnal conjecture—a survey" (PDF), Journal of Graph Theory, 75 (2): 178–190, arXiv:1606.08827, doi:10.1002/jgt.21730, MR 3150572, Zbl 1280.05086, archived (PDF) from the original on 2016-03-04, retrieved 2016-09-22.
  95. Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri; Sinclair, Alistair (2004), "Cuts, trees and -embeddings of graphs", Combinatorica, 24 (2): 233–269, doi:10.1007/s00493-004-0015-x, MR 2071334
  96. Spinrad, Jeremy P. (2003), "2. Implicit graph representation", Efficient Graph Representations, pp. 17–30, ISBN 978-0-8218-2815-1.
  97. "Jorgensen's Conjecture", Open Problem Garden, archived from the original on 2016-11-14, retrieved 2016-11-13.
  98. Baird, William; Bonato, Anthony (2012), "Meyniel's conjecture on the cop number: a survey", Journal of Combinatorics, 3 (2): 225–238, arXiv:1308.3385, doi:10.4310/JOC.2012.v3.n2.a6, MR 2980752
  99. Ducey, Joshua E. (2017), "On the critical group of the missing Moore graph", Discrete Mathematics, 340 (5): 1104–1109, arXiv:1509.00327, doi:10.1016/j.disc.2016.10.001, MR 3612450
  100. Fomin, Fedor V.; Høie, Kjartan (2006), "Pathwidth of cubic graphs and exact algorithms", Information Processing Letters, 97 (5): 191–196, doi:10.1016/j.ipl.2005.10.012, MR 2195217
  101. Schwenk, Allen (2012), "Some History on the Reconstruction Conjecture" (PDF), Joint Mathematics Meetings, archived (PDF) from the original on 2015-04-09, retrieved 2018-11-26
  102. Ramachandran, S. (1981), "On a new digraph reconstruction conjecture", Journal of Combinatorial Theory, Series B, 31 (2): 143–149, doi:10.1016/S0095-8956(81)80019-6, MR 0630977
  103. Seymour's 2nd Neighborhood Conjecture Archived 2019-01-11 at the Wayback Machine, Open Problems in Graph Theory and Combinatorics, Douglas B. West.
  104. Kühn, Daniela; Mycroft, Richard; Osthus, Deryk (2011), "A proof of Sumner's universal tournament conjecture for large tournaments", Proceedings of the London Mathematical Society, Third Series, 102 (4): 731–766, arXiv:1010.4430, doi:10.1112/plms/pdq035, MR 2793448, Zbl 1218.05034.
  105. 4-flow conjecture Archived 2018-11-26 at the Wayback Machine and 5-flow conjecture Archived 2018-11-26 at the Wayback Machine, Open Problem Garden
  106. Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. (2012), "Vizing's conjecture: a survey and recent results", Journal of Graph Theory, 69 (1): 46–76, CiteSeerX, doi:10.1002/jgt.20565, MR 2864622.
  107. Aschbacher, Michael (1990), "On Conjectures of Guralnick and Thompson", Journal of Algebra, 135 (2): 277–343, doi:10.1016/0021-8693(90)90292-V
  108. Khukhro, Evgeny I.; Mazurov, Victor D. (2019), Unsolved Problems in Group Theory. The Kourovka Notebook, arXiv:1401.0300v16
  109. Shelah S, Classification Theory, North-Holland, 1990
  110. Keisler, HJ (1967). "Ultraproducts which are not saturated". J. Symb. Log. 32 (1): 23–46. doi:10.2307/2271240. JSTOR 2271240.
  111. Malliaris M, Shelah S, "A dividing line in simple unstable theories." Archived 2017-08-02 at the Wayback Machine
  112. Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
  113. Peretz, Assaf (2006). "Geometry of forking in simple theories". Journal of Symbolic Logic Volume. 71 (1): 347–359. arXiv:math/0412356. doi:10.2178/jsl/1140641179.
  114. Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae. 159 (1): 1–50. arXiv:math/9802134. Bibcode:1998math......2134S.
  115. Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBN 978-1-904987-71-0.
  116. Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
  117. Baldwin, John T. (July 24, 2009). Categoricity (PDF). American Mathematical Society. ISBN 978-0-8218-4893-7. Archived (PDF) from the original on July 29, 2010. Retrieved February 20, 2014.
  118. Shelah, Saharon (2009). "Introduction to classification theory for abstract elementary classes". arXiv:0903.3428. Bibcode:2009arXiv0903.3428S. Cite journal requires |journal= (help)
  119. Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". Journal of Symbolic Logic. 54 (1): 207–220. doi:10.2307/2275025. JSTOR 2275025.
  120. Cherlin, G.; Shelah, S. (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory, Series B. 97 (3): 293–333. arXiv:math/0512218. doi:10.1016/j.jctb.2006.05.008.
  121. Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
  122. "Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key". Archived from the original on 2016-03-27. Retrieved 2016-03-18.
  123. Bruhn, Henning; Schaudt, Oliver (2016). "Newer sums of three cubes". arXiv:1604.07746v1 [math.NT].
  124. Guo, Song; Sun, Zhi-Wei (2005), "On odd covering systems with distinct moduli", Advances in Applied Mathematics, 35 (2): 182–187, arXiv:math/0412217, doi:10.1016/j.aam.2005.01.004, MR 2152886
  125. Aigner, Martin (2013), Markov's theorem and 100 years of the uniqueness conjecture, Cham: Springer, doi:10.1007/978-3-319-00888-2, ISBN 978-3-319-00887-5, MR 3098784
  126. Conrey, Brian, "Lectures on the Riemann zeta function (book review)", Bulletin of the American Mathematical Society, 53 (3): 507–512, doi:10.1090/bull/1525
  127. Ribenboim, P. (2006). Die Welt der Primzahlen. Springer-Lehrbuch (in German) (2nd ed.). Springer. pp. 242–243. doi:10.1007/978-3-642-18079-8. ISBN 978-3-642-18078-1.
  128. Dobson, J. B. (1 April 2017), "On Lerch's formula for the Fermat quotient", p. 23, arXiv:1103.3907v6 [math.NT]
  129. Banaschewski, Bernhard; Moore, Gregory H. (June 1990). "The dual Cantor-Bernstein theorem and the partition principle". Notre Dame Journal of Formal Logic. 31 (3): 375–381. doi:10.1305/ndjfl/1093635502.
  130. Mazur, Barry (1992), "The topology of rational points", Experimental Mathematics, 1 (1): 35–45, doi:10.1080/10586458.1992.10504244 (inactive 2019-08-20), archived from the original on 2019-04-07, retrieved 2019-04-07
  131. Shitov, Yaroslav (May 2019). "Counterexamples to Hedetniemi's conjecture". arXiv:1905.02167. Cite journal requires |journal= (help)
  132. Moreira, Joel; Richter, Florian K.; Robertson, Donald (2019). "A proof of a sumset conjecture of Erdős". Annals of Mathematics. 189 (2): 605–652. doi:10.4007/annals.2019.189.2.4.
  133. Stanley, Richard P. (1994), "A survey of Eulerian posets", in Bisztriczky, T.; McMullen, P.; Schneider, R.; Weiss, A. Ivić (eds.), Polytopes: abstract, convex and computational (Scarborough, ON, 1993), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 440, Dordrecht: Kluwer Academic Publishers, pp. 301–333, MR 1322068. See in particular p. 316.
  134. Kalai, Gil. "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". Archived from the original on 2019-02-16. Retrieved 2019-02-15.
  135. Wolchover, Natalie (July 11, 2017), "Pentagon Tiling Proof Solves Century-Old Math Problem", Quanta Magazine, archived from the original on August 6, 2017, retrieved July 18, 2017
  136. Lee, Choongbum (2017). "Ramsey numbers of degenerate graphs". Annals of Mathematics. 185 (3): 791–829. arXiv:1505.04773. doi:10.4007/annals.2017.185.3.2.
  137. Lamb, Evelyn (26 May 2016). "Two-hundred-terabyte maths proof is largest ever". Nature. 534 (7605): 17–18. Bibcode:2016Natur.534...17L. doi:10.1038/nature.2016.19990. PMID 27251254.
  138. Heule, Marijn J. H.; Kullmann, Oliver; Marek, Victor W. (2016). "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer". In Creignou, N.; Le Berre, D. (eds.). Theory and Applications of Satisfiability Testing – SAT 2016. Lecture Notes in Computer Science. 9710. Springer, [Cham]. pp. 228–245. arXiv:1605.00723. doi:10.1007/978-3-319-40970-2_15. ISBN 978-3-319-40969-6. MR 3534782.
  139. Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". Communications in Algebra. 43 (12): 5159–5167. doi:10.1080/00927872.2014.967398.
  140. Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three". Annals of Mathematics. 184 (2): 633–682. doi:10.4007/annals.2016.184.2.7. hdl:1721.1/115568.
  141. Bruhn, Henning; Schaudt, Oliver (2015). "The Erdos discrepancy problem". arXiv:1509.05363v5 [math.CO].
  142. Duncan, John F. R.; Griffin, Michael J.; Ono, Ken (1 December 2015). "Proof of the umbral moonshine conjecture". Research in the Mathematical Sciences. 2 (1): 26. doi:10.1186/s40687-015-0044-7.
  143. Bruhn, Henning; Schaudt, Oliver (2014). "Regularity of Einstein Manifolds and the Codimension 4 Conjecture". arXiv:1406.6534v10 [math.DG].
  144. "A Long-Sought Proof, Found and Almost Lost". Quanta Magazine. Natalie Wolchover. March 28, 2017. Archived from the original on April 24, 2017. Retrieved May 2, 2017.
  145. Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 [math.NT].
  146. Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252 [math.NT].
  147. Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748 [math.NT].
  148. Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). "The Kadison-Singer problem in mathematics and engineering: A detailed account". In Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal (eds.). Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida. Contemporary Mathematics. 414. American Mathematical Society. pp. 299–355. doi:10.1090/conm/414/07820. ISBN 978-0-8218-3923-2. Retrieved 24 April 2015.
  149. Mackenzie, Dana. "Kadison–Singer Problem Solved" (PDF). SIAM News (January/February 2014). Society for Industrial and Applied Mathematics. Archived (PDF) from the original on 23 October 2014. Retrieved 24 April 2015.
  150. Bruhn, Henning; Schaudt, Oliver (2012). "The virtual Haken conjecture". arXiv:1204.2810v1 [math.GT].
  151. Lee, Choongbum (2012). "Embedded minimal tori in S^3 and the Lawson conjecture". arXiv:1203.6597v2 [math.DG].
  152. Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics. 179 (2): 683–782. arXiv:1202.6036. doi:10.4007/annals.2014.179.2.6.
  153. Lee, Choongbum (2011). "A counterexample to Beck's conjecture on the discrepancy of three permutations". arXiv:1104.2922 [cs.DM].
  154. Bruhn, Henning; Schaudt, Oliver (2011). "The good pants homology and the Ehrenpreis conjecture". arXiv:1101.1330v4 [math.GT].
  155. "Archived copy" (PDF). Archived (PDF) from the original on 2016-10-07. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  156. "Archived copy" (PDF). Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  157. "Archived copy" (PDF). Archived (PDF) from the original on 2016-10-07. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  158. "page 359" (PDF). Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18.
  159. "motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow". Retrieved 2016-03-18.
  160. Bruhn, Henning; Schaudt, Oliver (2010). "On the Erdos distinct distance problem in the plane". arXiv:1011.4105v3 [math.CO].
  161. Namazi, Hossein; Souto, Juan (2012). "Non-realizability and ending laminations: Proof of the density conjecture". Acta Mathematica. 209 (2): 323–395. doi:10.1007/s11511-012-0088-0.
  162. Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics. 176 (1): 383–412. arXiv:1006.2814. doi:10.4007/annals.2012.176.1.7.
  163. Ziegler, Günter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica. Extra Volume "Optimization Stories": 75–85. Archived from the original on 2015-04-02. Retrieved 2015-03-25.
  164. Cilleruelo, Javier (2010). "Generalized Sidon sets". Advances in Mathematics. 225 (5): 2786–2807. doi:10.1016/j.aim.2010.05.010.
  165. Bruhn, Henning; Schaudt, Oliver (2009). "Rational group ring elements with kernels having irrational dimension". Proceedings of the London Mathematical Society. 107 (6): 1424–1448. arXiv:0909.2360. doi:10.1112/plms/pdt029.
  166. Bruhn, Henning; Schaudt, Oliver (2009). "A proof of the Kauffman-Harary Conjecture". Algebr. Geom. Topol. 9 (4): 2027–2039. arXiv:0906.1612. doi:10.2140/agt.2009.9.2027.
  167. Bruhn, Henning; Schaudt, Oliver (2009). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". arXiv:0910.5501v5 [math.GT].
  168. "Archived copy" (PDF). Archived (PDF) from the original on 2016-03-03. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  169. Lurie, Jacob (2009). "On the classification of topological field theories". Current Developments in Mathematics. 2008: 129–280. doi:10.4310/cdm.2008.v2008.n1.a3.
  170. "Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Archived from the original on March 22, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.
  171. Bruhn, Henning; Schaudt, Oliver (2008). "Completion of the Proof of the Geometrization Conjecture". arXiv:0809.4040 [math.DG].
  172. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX, doi:10.1007/s00222-009-0205-7
  173. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX, doi:10.1007/s00222-009-0206-6
  174. "2011 Cole Prize in Number Theory" (PDF). Notices of the AMS. 58 (4): 610–611. ISSN 1088-9477. OCLC 34550461. Archived (PDF) from the original on 2015-11-06. Retrieved 2015-11-12.
  175. "Archived copy" (PDF). Archived (PDF) from the original on 2016-03-24. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  176. Lu, Zhiqin (2007). "Proof of the normal scalar curvature conjecture". arXiv:0711.3510 [math.DG].
  177. Bruhn, Henning; Schaudt, Oliver (2005). "Menger's theorem for infinite graphs". arXiv:math/0509397.
  178. Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. Retrieved 2015-11-12.
  179. "Archived copy" (PDF). Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  180. "Archived copy" (PDF). Archived from the original (PDF) on 2016-01-07. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  181. "Archived copy" (PDF). Archived (PDF) from the original on 2016-10-13. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  182. "Archived copy" (PDF). Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  183. Dencker, Nils (2006), "The resolution of the Nirenberg–Treves conjecture" (PDF), Annals of Mathematics, 163 (2): 405–444, doi:10.4007/annals.2006.163.405, archived (PDF) from the original on 2018-07-20, retrieved 2019-04-07
  184. "Research Awards", Clay Mathematics Institute, archived from the original on 2019-04-07, retrieved 2019-04-07
  185. "Archived copy" (PDF). Archived (PDF) from the original on 2016-04-06. Retrieved 2016-03-22.CS1 maint: archived copy as title (link)
  186. "Fields Medal – Ngô Bảo Châu". International Congress of Mathematicians 2010. ICM. 19 August 2010. Archived from the original on 24 September 2015. Retrieved 2015-11-12. Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
  187. Bruhn, Henning; Schaudt, Oliver (2004). "Tameness of hyperbolic 3-manifolds". arXiv:math/0405568.
  188. "Graph Theory". Archived from the original on 2016-03-08. Retrieved 2016-03-18.
  189. Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931–2012)" (PDF). Notices of the AMS. 62 (4): 358. ISSN 1088-9477. OCLC 34550461. Archived (PDF) from the original on 2016-03-04. Retrieved 2015-11-13. The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.
  190. "Bombieri and Tao Receive King Faisal Prize" (PDF). Notices of the AMS. 57 (5): 642–643. May 2010. ISSN 1088-9477. OCLC 34550461. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18. Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.
  191. Bruhn, Henning; Schaudt, Oliver (2004). "The classification of Kleinian surface groups, II: The Ending Lamination Conjecture". arXiv:math/0412006.
  192. Connelly, Robert; Demaine, Erik D.; Rote, Günter (2003), "Straightening polygonal arcs and convexifying polygonal cycles" (PDF), Discrete and Computational Geometry, 30 (2): 205–239, doi:10.1007/s00454-003-0006-7, MR 1931840
  193. Green, Ben (2004), "The Cameron–Erdős conjecture", The Bulletin of the London Mathematical Society, 36 (6): 769–778, arXiv:math.NT/0304058, doi:10.1112/S0024609304003650, MR 2083752
  194. "News from 2007". American Mathematical Society. AMS. 31 December 2007. Archived from the original on 17 November 2015. Retrieved 2015-11-13. The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."
  195. Voevodsky, Vladimir (2003). "Reduced power operations in motivic cohomology" (PDF). Publications Mathématiques de l'IHÉS. 98: 1–57. arXiv:math/0107109. CiteSeerX doi:10.1007/s10240-003-0009-z. Archived from the original on 2017-07-28. Retrieved 2016-03-18.
  196. Savchev, Svetoslav (2005). "Kemnitz' conjecture revisited". Discrete Mathematics. 297 (1–3): 196–201. doi:10.1016/j.disc.2005.02.018.
  197. "Archived copy" (PDF). Archived (PDF) from the original on 2016-03-08. Retrieved 2016-03-23.CS1 maint: archived copy as title (link)
  198. "Archived copy" (PDF). Archived (PDF) from the original on 2016-04-03. Retrieved 2016-03-20.CS1 maint: archived copy as title (link)
  199. Chudnovsky, Maria; Robertson, Neil; Seymour, Paul; Thomas, Robin (2002). "The strong perfect graph theorem". arXiv:math/0212070.
  200. "Archived copy" (PDF). Archived (PDF) from the original on 2016-10-07. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  201. Knight, R. W. (2002), The Vaught Conjecture: A Counterexample, manuscript
  202. "Archived copy" (PDF). Archived (PDF) from the original on 2016-03-03. Retrieved 2016-03-22.CS1 maint: archived copy as title (link)
  203. Metsänkylä, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved" (PDF). Bulletin of the American Mathematical Society. 41 (1): 43–57. doi:10.1090/s0273-0979-03-00993-5. ISSN 0273-0979. Archived (PDF) from the original on 4 March 2016. Retrieved 13 November 2015. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.
  204. "Archived copy" (PDF). Archived (PDF) from the original on 2016-10-07. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  205. "Archived copy" (PDF). Archived from the original (PDF) on 2015-09-08. Retrieved 2016-03-18.CS1 maint: archived copy as title (link)
  206. Bruhn, Henning; Schaudt, Oliver (2001). "Deligne's Conjecture on 1-Motives". arXiv:math/0102150.
  207. Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society, 14 (4): 843–939, doi:10.1090/S0894-0347-01-00370-8, ISSN 0894-0347, MR 1839918
  208. Luca, Florian (2000). "On a conjecture of Erdős and Stewart" (PDF). Mathematics of Computation. 70 (234): 893–897. doi:10.1090/s0025-5718-00-01178-9. Archived (PDF) from the original on 2016-04-02. Retrieved 2016-03-18.
  209. "Archived copy" (PDF). Archived (PDF) from the original on 2016-04-02. Retrieved 2016-03-20.CS1 maint: archived copy as title (link)
  210. Croot, Ernest S., III (2000), Unit Fractions, Ph.D. thesis, University of Georgia, Athens. Croot, Ernest S., III (2003), "On a coloring conjecture about unit fractions", Annals of Mathematics, 157 (2): 545–556, arXiv:math.NT/0311421, doi:10.4007/annals.2003.157.545
  211. Bruhn, Henning; Schaudt, Oliver (1999). "The Honeycomb Conjecture". arXiv:math/9906042.
  212. Bruhn, Henning; Schaudt, Oliver (1999). "Proof of the gradient conjecture of R. Thom". arXiv:math/9906212.
  213. Ullmo, E (1998). "Positivité et Discrétion des Points Algébriques des Courbes". Annals of Mathematics. 147 (1): 167–179. arXiv:alg-geom/9606017. doi:10.2307/120987. JSTOR 120987. Zbl 0934.14013.
  214. Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". Annals of Mathematics. 147 (1): 159–165. doi:10.2307/120986. JSTOR 120986.
  215. Lafforgue, Laurent (1998), "Chtoucas de Drinfeld et applications" [Drinfelʹd shtukas and applications], Documenta Mathematica (in French), II: 563–570, ISSN 1431-0635, MR 1648105, archived from the original on 2018-04-27, retrieved 2016-03-18
  216. Bruhn, Henning; Schaudt, Oliver (2015). "A formal proof of the Kepler conjecture". arXiv:1501.02155 [math.MG].
  217. Bruhn, Henning; Schaudt, Oliver (1998). "A proof of the dodecahedral conjecture". arXiv:math/9811079.
  218. Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate.
  219. Merel, Loïc (1996). ""Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]". Inventiones Mathematicae. 124 (1): 437–449. Bibcode:1996InMat.124..437M. doi:10.1007/s002220050059. MR 1369424.
  220. Chen, Zhibo (1996). "Harary's conjectures on integral sum graphs". Discrete Mathematics. 160 (1–3): 241–244. doi:10.1016/0012-365X(95)00163-Q.
  221. Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem" (PDF). Annals of Mathematics. 141 (3): 443–551. CiteSeerX doi:10.2307/2118559. JSTOR 2118559. OCLC 37032255. Archived (PDF) from the original on 2011-05-10. Retrieved 2016-03-06.
  222. Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics. 141 (3): 553–572. CiteSeerX doi:10.2307/2118560. JSTOR 2118560. OCLC 37032255.

Further reading

Books discussing problems solved since 1995

Books discussing unsolved problems

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.