# List of mathematical series

This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.

• Here, ${\displaystyle 0^{0}}$ is taken to have the value ${\displaystyle 1}$
• ${\displaystyle B_{n}(x)}$ is a Bernoulli polynomial.
• ${\displaystyle B_{n}}$ is a Bernoulli number, and here, ${\displaystyle B_{1}=-{\frac {1}{2}}.}$
• ${\displaystyle E_{n}}$ is an Euler number.
• ${\displaystyle \zeta (s)}$ is the Riemann zeta function.
• ${\displaystyle \Gamma (z)}$ is the gamma function.
• ${\displaystyle \psi _{n}(z)}$ is a polygamma function.
• ${\displaystyle \operatorname {Li} _{s}(z)}$ is a polylogarithm.
• ${\displaystyle n \choose k}$ is binomial coefficient
• ${\displaystyle \exp(x)}$ denotes exponential of ${\displaystyle x}$

## Sums of powers

• ${\displaystyle \sum _{k=0}^{m}k^{n-1}={\frac {B_{n}(m+1)-B_{n}}{n}}}$

The first few values are:

• ${\displaystyle \sum _{k=1}^{m}k={\frac {m(m+1)}{2}}}$
• ${\displaystyle \sum _{k=1}^{m}k^{2}={\frac {m(m+1)(2m+1)}{6}}={\frac {m^{3}}{3}}+{\frac {m^{2}}{2}}+{\frac {m}{6}}}$
• ${\displaystyle \sum _{k=1}^{m}k^{3}=\left[{\frac {m(m+1)}{2}}\right]^{2}={\frac {m^{4}}{4}}+{\frac {m^{3}}{2}}+{\frac {m^{2}}{4}}}$

See zeta constants.

• ${\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}}=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}}$

The first few values are:

• ${\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}={\frac {\pi ^{2}}{6}}}$ (the Basel problem)
• ${\displaystyle \zeta (4)=\sum _{k=1}^{\infty }{\frac {1}{k^{4}}}={\frac {\pi ^{4}}{90}}}$
• ${\displaystyle \zeta (6)=\sum _{k=1}^{\infty }{\frac {1}{k^{6}}}={\frac {\pi ^{6}}{945}}}$

## Power series

### Low-order polylogarithms

Finite sums:

• ${\displaystyle \sum _{k=0}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}}$, (geometric series)
• ${\displaystyle \sum _{k=1}^{n}kz^{k}=z{\frac {1-(n+1)z^{n}+nz^{n+1}}{(1-z)^{2}}}}$
• ${\displaystyle \sum _{k=1}^{n}k^{2}z^{k}=z{\frac {1+z-(n+1)^{2}z^{n}+(2n^{2}+2n-1)z^{n+1}-n^{2}z^{n+2}}{(1-z)^{3}}}}$
• ${\displaystyle \sum _{k=1}^{n}k^{m}z^{k}=\left(z{\frac {d}{dz}}\right)^{m}{\frac {1-z^{n+1}}{1-z}}}$

Infinite sums, valid for ${\displaystyle |z|<1}$ (see polylogarithm):

• ${\displaystyle \operatorname {Li} _{n}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{n}}}}$

The following is a useful property to calculate low-integer-order polylogarithms recursively in closed form:

• ${\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {Li} _{n}(z)={\frac {\operatorname {Li} _{n-1}(z)}{z}}}$
• ${\displaystyle \operatorname {Li} _{1}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k}}=-\ln(1-z)}$
• ${\displaystyle \operatorname {Li} _{0}(z)=\sum _{k=1}^{\infty }z^{k}={\frac {z}{1-z}}}$
• ${\displaystyle \operatorname {Li} _{-1}(z)=\sum _{k=1}^{\infty }kz^{k}={\frac {z}{(1-z)^{2}}}}$
• ${\displaystyle \operatorname {Li} _{-2}(z)=\sum _{k=1}^{\infty }k^{2}z^{k}={\frac {z(1+z)}{(1-z)^{3}}}}$
• ${\displaystyle \operatorname {Li} _{-3}(z)=\sum _{k=1}^{\infty }k^{3}z^{k}={\frac {z(1+4z+z^{2})}{(1-z)^{4}}}}$
• ${\displaystyle \operatorname {Li} _{-4}(z)=\sum _{k=1}^{\infty }k^{4}z^{k}={\frac {z(1+z)(1+10z+z^{2})}{(1-z)^{5}}}}$

### Exponential function

• ${\displaystyle \sum _{k=0}^{\infty }{\frac {z^{k}}{k!}}=e^{z}}$
• ${\displaystyle \sum _{k=0}^{\infty }k{\frac {z^{k}}{k!}}=ze^{z}}$ (cf. mean of Poisson distribution)
• ${\displaystyle \sum _{k=0}^{\infty }k^{2}{\frac {z^{k}}{k!}}=(z+z^{2})e^{z}}$ (cf. second moment of Poisson distribution)
• ${\displaystyle \sum _{k=0}^{\infty }k^{3}{\frac {z^{k}}{k!}}=(z+3z^{2}+z^{3})e^{z}}$
• ${\displaystyle \sum _{k=0}^{\infty }k^{4}{\frac {z^{k}}{k!}}=(z+7z^{2}+6z^{3}+z^{4})e^{z}}$
• ${\displaystyle \sum _{k=0}^{\infty }k^{n}{\frac {z^{k}}{k!}}=z{\frac {d}{dz}}\sum _{k=0}^{\infty }k^{n-1}{\frac {z^{k}}{k!}}\,\!=e^{z}T_{n}(z)}$

where ${\displaystyle T_{n}(z)}$ is the Touchard polynomials.

### Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions

• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}=\sin z}$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)!}}=\sinh z}$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k)!}}=\cos z}$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k}}{(2k)!}}=\cosh z}$
• ${\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tan z,|z|<{\frac {\pi }{2}}}$
• ${\displaystyle \sum _{k=1}^{\infty }{\frac {(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tanh z,|z|<{\frac {\pi }{2}}}$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\cot z,|z|<\pi }$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\coth z,|z|<\pi }$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\csc z,|z|<\pi }$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\operatorname {csch} z,|z|<\pi }$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}E_{2k}z^{2k}}{(2k)!}}=\operatorname {sech} z,|z|<{\frac {\pi }{2}}}$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {E_{2k}z^{2k}}{(2k)!}}=\sec z,|z|<{\frac {\pi }{2}}}$
• ${\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{(2k)!}}=\operatorname {ver} z}$ (versine)
• ${\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{2(2k)!}}=\operatorname {hav} z}$[1] (haversine)
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\arcsin z,|z|\leq 1}$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\operatorname {arcsinh} {z},|z|\leq 1}$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2k+1}}=\arctan z,|z|<1}$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{2k+1}}=\operatorname {arctanh} z,|z|<1}$
• ${\displaystyle \ln 2+\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^{2}}}=\ln \left(1+{\sqrt {1+z^{2}}}\right),|z|\leq 1}$

### Modified-factorial denominators

• ${\displaystyle \sum _{k=0}^{\infty }{\frac {(4k)!}{2^{4k}{\sqrt {2}}(2k)!(2k+1)!}}z^{k}={\sqrt {\frac {1-{\sqrt {1-z}}}{z}}},|z|<1}$[2]
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}(k!)^{2}}{(k+1)(2k+1)!}}z^{2k+2}=\left(\arcsin {z}\right)^{2},|z|\leq 1}$[2]
• ${\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \arcsin {z}},|z|\leq 1}$

### Binomial coefficients

• ${\displaystyle (1+z)^{\alpha }=\sum _{k=0}^{\infty }{\alpha \choose k}z^{k},|z|<1}$ (see Binomial theorem)
• [3] ${\displaystyle \sum _{k=0}^{\infty }{{\alpha +k-1} \choose k}z^{k}={\frac {1}{(1-z)^{\alpha }}},|z|<1}$
• [3] ${\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k+1}}{2k \choose k}z^{k}={\frac {1-{\sqrt {1-4z}}}{2z}},|z|\leq {\frac {1}{4}}}$, generating function of the Catalan numbers
• [3] ${\displaystyle \sum _{k=0}^{\infty }{2k \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}},|z|<{\frac {1}{4}}}$, generating function of the Central binomial coefficients
• [3] ${\displaystyle \sum _{k=0}^{\infty }{2k+\alpha \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}}\left({\frac {1-{\sqrt {1-4z}}}{2z}}\right)^{\alpha },|z|<{\frac {1}{4}}}$

### Harmonic numbers

(See harmonic numbers, themselves defined ${\textstyle H_{n}=\sum _{j=1}^{n}{\frac {1}{j}}}$)

• ${\displaystyle \sum _{k=1}^{\infty }H_{k}z^{k}={\frac {-\ln(1-z)}{1-z}},|z|<1}$
• ${\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1}$
• ${\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}H_{2k}}{2k+1}}z^{2k+1}={\frac {1}{2}}\arctan {z}\log {(1+z^{2})},\qquad |z|<1}$[2]
• ${\displaystyle \sum _{n=0}^{\infty }\sum _{k=0}^{2n}{\frac {(-1)^{k}}{2k+1}}{\frac {z^{4n+2}}{4n+2}}={\frac {1}{4}}\arctan {z}\log {\frac {1+z}{1-z}},\qquad |z|<1}$[2]

## Binomial coefficients

• ${\displaystyle \sum _{k=0}^{n}{n \choose k}=2^{n}}$
• ${\displaystyle \sum _{k=0}^{n}(-1)^{k}{n \choose k}=0,{\text{ where }}n>0}$
• ${\displaystyle \sum _{k=0}^{n}{k \choose m}={n+1 \choose m+1}}$
• ${\displaystyle \sum _{k=0}^{n}{m+k-1 \choose k}={n+m \choose n}}$ (see Multiset)
• ${\displaystyle \sum _{k=0}^{n}{\alpha \choose k}{\beta \choose n-k}={\alpha +\beta \choose n}}$ (see Vandermonde identity)

## Trigonometric functions

Sums of sines and cosines arise in Fourier series.

• ${\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(k\theta )}{k}}={\frac {\pi -\theta }{2}},0<\theta <2\pi }$
• ${\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(k\theta )}{k}}=-{\frac {1}{2}}\ln(2-2\cos \theta ),\theta \in \mathbb {R} }$
• ${\displaystyle \sum _{k=0}^{\infty }{\frac {\sin[(2k+1)\theta ]}{2k+1}}={\frac {\pi }{4}},0<\theta <\pi }$, [4]
• ${\displaystyle B_{n}(x)=-{\frac {n!}{2^{n-1}\pi ^{n}}}\sum _{k=1}^{\infty }{\frac {1}{k^{n}}}\cos \left(2\pi kx-{\frac {\pi n}{2}}\right),0[5]
• ${\displaystyle \sum _{k=0}^{n}\sin(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\sin(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}}$
• ${\displaystyle \sum _{k=0}^{n}\cos(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\cos(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}}$
• ${\displaystyle \sum _{k=1}^{n-1}\sin {\frac {\pi k}{n}}=\cot {\frac {\pi }{2n}}}$
• ${\displaystyle \sum _{k=1}^{n-1}\sin {\frac {2\pi k}{n}}=0}$
• ${\displaystyle \sum _{k=0}^{n-1}\csc ^{2}\left(\theta +{\frac {\pi k}{n}}\right)=n^{2}\csc ^{2}(n\theta )}$[6]
• ${\displaystyle \sum _{k=1}^{n-1}\csc ^{2}{\frac {\pi k}{n}}={\frac {n^{2}-1}{3}}}$
• ${\displaystyle \sum _{k=1}^{n-1}\csc ^{4}{\frac {\pi k}{n}}={\frac {n^{4}+10n^{2}-11}{45}}}$

## Rational functions

• ${\displaystyle \sum _{n=a+1}^{\infty }{\frac {a}{n^{2}-a^{2}}}={\frac {1}{2}}H_{2a}}$[7]
• ${\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{2}+a^{2}}}={\frac {1+a\pi \coth(a\pi )}{2a^{2}}}}$
• ${\displaystyle \displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{4}+4a^{4}}}={\dfrac {1+a\pi \coth(a\pi )}{8a^{4}}}}$
• An infinite series of any rational function of ${\displaystyle n}$ can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition.[8] This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

## Exponential function

• ${\displaystyle \displaystyle {\dfrac {1}{\sqrt {p}}}\sum _{n=0}^{p-1}\exp \left({\frac {2\pi in^{2}q}{p}}\right)={\dfrac {e^{\pi i/4}}{\sqrt {2q}}}\sum _{n=0}^{2q-1}\exp \left(-{\frac {\pi in^{2}p}{2q}}\right)}$(see the Landsberg–Schaar relation)
• ${\displaystyle \displaystyle \sum _{n=-\infty }^{\infty }e^{-\pi n^{2}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}}$

## Notes

1. Weisstein, Eric W. "Haversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-03-10. Retrieved 2015-11-06.
2. Wilf, Herbert R. (1994). generatingfunctionology (PDF). Academic Press, Inc.
3. "Theoretical computer science cheat sheet" (PDF).
4. Calculate the Fourier expansion of the function ${\displaystyle f(x)={\frac {\pi }{4}}}$ on the interval ${\displaystyle 0:
• ${\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }c_{n}\sin[nx]+d_{n}\cos[nx]}$
${\displaystyle \Rightarrow {\begin{cases}c_{n}={\begin{cases}{\frac {1}{n}}\quad (n{\text{ odd}})\\0\quad (n{\text{ even}})\end{cases}}\\d_{n}=0\quad (\forall n)\end{cases}}}$
5. "Bernoulli polynomials: Series representations (subsection 06/02)". Wolfram Research. Retrieved 2 June 2011.
6. Hofbauer, Josef. "A simple proof of 1+1/2^2+1/3^2+...=PI^2/6 and related identities" (PDF). Retrieved 2 June 2011.
7. Sondow, Jonathan; Weisstein, Eric W. "Riemann Zeta Function (eq. 52)". MathWorld—A Wolfram Web Resource.
8. Abramowitz, Milton; Stegun, Irene (1964). "6.4 Polygamma functions". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. p. 260. ISBN 0-486-61272-4.

## References

• Many books with a list of integrals also have a list of series.