Lie operad

In mathematics, the Lie operad is an operad whose algebras are Lie algebras. The notion (at least one version) was introduced by Ginzburg & Kapranov (1994) in their formulation of Koszul duality.

Definition à la Ginzburg–Kapranov

Let denote the free Lie algebra (over some field) with the generators and the subspace spanned by all the bracket monomials containing each exactly once. The symmetric group acts on by permutations and, under that action, is invariant. Hence, is an operad.[1]

The Koszul-dual of is the commutative-ring operad, an operad whose algebras are commutative rings.



  • Ginzburg, Victor; Kapranov, Mikhail (1994), "Koszul duality for operads", Duke Mathematical Journal, 76 (1): 203–272, doi:10.1215/S0012-7094-94-07608-4, MR 1301191
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.