James D. Murray

James Dickson Murray FRSE FRS, (born 2 January 1931) is professor emeritus of applied mathematics at University of Washington and University of Oxford. He is best known for his authoritative and extensive work entitled Mathematical Biology.

James Murray
James Dickson Murray

(1931-01-02) 2 January 1931[1]
Moffat, Scotland
Alma materUniversity of St Andrews
AwardsFRS (1985)[2]
IMA Gold Medal (2008)
Scientific career
Doctoral advisorAndrew Ronald Mitchell[3]
Doctoral students
  • Philip Maini
  • David Lane
  • Stephen Wilmott
  • Mary Myerscough
  • Daniel Bentil
  • David Crawford
  • Mark A. Lewis
  • Louisa A. Shaw
  • Michael Jenkins
  • Gwen Littlewort
  • Jonathan Sherratt
  • Meghan Burke
  • Gerhard Cruywagen
  • Julian Cook
  • Paul Kulesa
  • Katrin White
  • Mei Zhu
  • Daphne Manoussaki
  • Rebecca Tyson
  • Patrick Nelson
  • Trachette Jackson
  • Kristin R. Swanson

Early life

Murray was born in Moffat, Scotland, and was educated at St. Andrews University, where he received with honours a bachelor's degree in mathematics in 1953, he took his PhD there in 1956.

Research and career

His first post was at the University of Durham, UK; later he has held positions at Harvard University, London and Oxford, becoming professor of mechanical engineering at the University of Michigan in 1965, at the age of 34.

He later became professor of mathematical biology at the University of Oxford, a fellow and tutor in mathematics at Corpus Christi College, Oxford and founder and director of the Centre for Mathematical Biology. He left Oxford in the late 1980s for the University of Washington in Seattle, where he spent the rest of his career as professor of mathematics and adjunct professor of zoology.

His research is characterised by its great range and depth: an early example is his fundamental contributions to understanding the biomechanics of the human body when launched from an aircraft in an ejection seat. He has made contributions to many other areas, ranging from understanding and preventing severe scarring; fingerprint formation; sex determination, modelling of animal coat and territory formation in wolf-deer interacting populations.

Selected publications

  • Mathematical Biology. 3rd edition in 2 volumes: Mathematical Biology: I. An Introduction (551 pages) 2002; Mathematical Biology: II. Spatial Models and Biomedical Applications (811 pages) 2003 (second printings 2004).
  • Glioblastoma brain tumours: estimating the time from brain tumour initiation and resolution of a patient survival anomaly after similar treatment protocols, J. Biol. Dyn., 6:sup2, 118–127, 2012.
  • Why Are There No 3-Headed Monsters? Mathematical Modeling in Biology. Notices of the Amer. Math. Soc.. June/July, 785–795, 2012.
  • On the mechanochemical theory of biological pattern formation with application to vasculogenesis. Comptes rendus de l'Académie des Sciences de Paris (Biologies) 326: 239–252, 2003.
  • Vignettes from the field of mathematical biology – the application of mathematics to biology and medicine. Phil. Trans. Roy. Soc. Interface Focus 2012. doi: 10.1098/rsfs.2011.0102.
  • On the use of quantitative modelling to help understand PSA dynamics and other medical problems (with K.R. Swanson and L.D. True). Amer. J. Clin. Pathol., 119(1):14-7, 2003.
  • Virtual and real brain tumors: using mathematical modelling to quantify glioma growth and invasion (with K.R. Swanson, C. Bridge, and E.C. Alvord), Journal of the Neurological Sciences, 216(1):1–10, 2003.
  • Virtual brain tumors (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy (with K.R. Swanson and E.C. Alvord). British J. Cancer 86: 14–18, 2002. [Abstracted for inclusion in the 2003 Yearbook of the Institute of Oncology]
  • Pattern formation, biological. In: The Handbook of Brain Theory and Neural Networks (ed. M.A. Arbib) pp. 851–859, MIT Press, Cambridge, 2002.
  • The Mathematics of Marriage: Dynamic Nonlinear Models (with J.M. Gottman, C. Swanson, R. Tyson, and K.R. Swanson). MIT Press, Cambridge, MA, 2002.
  • A mathematical model for the dynamics of serum prostate specific antigen as a marker for cancerous growth (with K.R. Swanson, D. Lin, L. True, K. Buhler and R. Vassella). Amer. J. Pathol. 158(6): 2195–2199, 2001.

Awards and honours

Murray was elected a Fellow of the Royal Society of Edinburgh in 1979[4] and a Fellow of the Royal Society (FRS) in 1985.[2]

In 2008 Murray and Professor T. J. Pedley, FRS were jointly awarded the Gold Medal of the Institute of Mathematics and its Applications in recognition of their "outstanding contributions to mathematics and its applications over a period of years"[5].


  1. "MURRAY, Prof. James Dickson". Who's Who. ukwhoswho.com. 2016 (online Oxford University Press ed.). A & C Black, an imprint of Bloomsbury Publishing plc. (subscription or UK public library membership required) (subscription required)
  2. "Professor James Murray FRS". London: Royal Society. Archived from the original on 17 November 2015.
  3. James D. Murray at the Mathematics Genealogy Project
  4. "Emeritus Professor James Dickson Murray FRS FRSE". The Royal Society of Edinburgh. 19 May 2017. Retrieved 15 January 2019.
  5. "IMA Gold Medal". Retrieved 16 May 2018. Institute of Mathematics and its Applications
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.