Ineffable cardinal

In the mathematics of transfinite numbers, an ineffable cardinal is a certain kind of large cardinal number, introduced by Jensen & Kunen (1969).

A cardinal number is called almost ineffable if for every (where is the powerset of ) with the property that is a subset of for all ordinals , there is a subset of having cardinality and homogeneous for , in the sense that for any in , .

A cardinal number is called ineffable if for every binary-valued function , there is a stationary subset of on which is homogeneous: that is, either maps all unordered pairs of elements drawn from that subset to zero, or it maps all such unordered pairs to one.

More generally, is called -ineffable (for a positive integer ) if for every there is a stationary subset of on which is -homogeneous (takes the same value for all unordered -tuples drawn from the subset). Thus, it is ineffable if and only if it is 2-ineffable.

A totally ineffable cardinal is a cardinal that is -ineffable for every . If is -ineffable, then the set of -ineffable cardinals below is a stationary subset of .

Every n-ineffable cardinal is n-almost ineffable (with set of n-almost ineffable below it stationary), and every n-almost ineffable is n-subtle (with set of n-subtle below it stationary). The least n-subtle cardinal is not even weakly compact (and unlike ineffable cardinals, the least n-almost ineffable is -describable), but n-1-ineffable cardinals are stationary below every n-subtle cardinal.

A cardinal κ is completely ineffable iff there is a non-empty such that
- every is stationary
- for every and , there is homogeneous for f with .

Using any finite n > 1 in place of 2 would lead to the same definition, so completely ineffable cardinals are totally ineffable (and have greater consistency strength). Completely ineffable cardinals are -indescribable for every n, but the property of being completely ineffable is .

The consistency strength of completely ineffable is below that of 1-iterable cardinals, which in turn is below remarkable cardinals, which in turn is below ω-Erdős cardinals. A list of large cardinal axioms by consistency strength is available here.


  • Friedman, Harvey (2001), "Subtle cardinals and linear orderings", Annals of Pure and Applied Logic, 107 (1–3): 1–34, doi:10.1016/S0168-0072(00)00019-1.
  • Jensen, Ronald; Kunen, Kenneth (1969), Some Combinatorial Properties of L and V, Unpublished manuscript
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.