Henk van der Vorst

Hendrik "Henk" Albertus van der Vorst (born 5 May 1944, Venlo)[1] is a Dutch mathematician and Emeritus Professor of Numerical Analysis at Utrecht University. According to the Institute for Scientific Information (ISI), his paper[2] on the BiCGSTAB method was the most cited paper in the field of mathematics in the 1990s.[3] He is a member of the Royal Netherlands Academy of Arts and Sciences (KNAW) since 2002[4] and the Netherlands Academy of Technology and Innovation.[5] In 2006 he was awarded a knighthood of the Order of the Netherlands Lion.[6] Henk van der Vorst is a Fellow of Society for Industrial and Applied Mathematics (SIAM).[7]

His major contributions include preconditioned iterative methods, in particular the ICCG (incomplete Cholesky conjugate gradient) method (developed together with Koos Meijerink), a version of preconditioned conjugate gradient method,[8][9] the BiCGSTAB[2] and (together with Kees Vuik) GMRESR[10] Krylov subspace methods and (together with Gerard Sleijpen) the Jacobi-Davidson method[11] for solving ordinary, generalized, and nonlinear eigenproblems. He has analyzed convergence behavior of the conjugate gradient[12] and Lanczos methods. He has also developed a number of preconditioners for parallel computers,[13] including truncated Neumann series preconditioner, incomplete twisted factorizations, and the incomplete factorization based on the so-called "vdv" ordering.

He is the author of the book[14] and one of the authors of the Templates projects for linear problems[15] and eigenproblems.[16]

References

  1. Prof.dr. H.A. van der Vorst at the Catalogus Professorum Academiæ Rheno-Traiectinæ
  2. H.A. van der Vorst (1992), "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems" (PDF), SIAM J. Sci. Stat. Comput., 13 (2): 631–644, doi:10.1137/0913035, hdl:10338.dmlcz/104566
  3. in-cites, September 2001, 2001
  4. "Henk van der Vorst" (in Dutch). Royal Netherlands Academy of Arts and Sciences. Retrieved 14 July 2015.
  5. Members of the Netherlands Academy of Technology and Innovation, archived from the original on 2011-07-24
  6. Jan Brandts; Bernd Fischer; Andy Wathen (December 2006), "Reflections on Sir Henk van der Vorst", SIAM News, 39 (10)
  7. "SIAM Fellows: Class of 2009". SIAM. Retrieved 2009-12-18.
  8. J.A. Meijerink; H.A.van der Vorst (1977), "An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix", Math. Comp., 31 (137): 148–162, doi:10.2307/2005786, JSTOR 2005786
  9. H.A. van der Vorst (1981), "Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems", J. Comput. Phys., 44: 1–19, doi:10.1016/0021-9991(81)90034-6
  10. H.A. van der Vorst; C. Vuik (1994), "GMRESR: A family of nested GMRES methods", Numer. Lin. Alg. Appl., 1 (4): 369–386, CiteSeerX 10.1.1.465.4477, doi:10.1002/nla.1680010404
  11. G.L.G. Sleijpen; H.A. van der Vorst (1996), "A Jacobi-Davidson iteration method for linear eigenvalue problems", SIAM J. Matrix Anal. Appl., 17 (2): 401–425, CiteSeerX 10.1.1.50.2569, doi:10.1137/S0895479894270427
  12. A. van der Sluis; H.A. van der Vorst (1986), "The rate of convergence of conjugate gradients", Numerische Mathematik, 48 (5): 543–560, doi:10.1007/BF01389450
  13. H.A. van der Vorst (1989), "High performance preconditioning", SIAM J. Sci. Statist. Comput., 10 (6): 1174–1185, doi:10.1137/0910071
  14. H.A. van der Vorst (April 2003), Iterative Krylov Methods for Large Linear systems, Cambridge University Press, Cambridge, ISBN 978-0-521-81828-5
  15. Barrett, Richard; Berry, Michael W.; Chan, Tony F.; Demmel, James; Donato, June; Dongarra, Jack; Eijkhout, Victor; Pozo, Roldan; Romine, Charles; Vorst, Henk van der (Accessed January 2008), Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, ISBN 978-0-89871-328-2 Check date values in: |year= (help)
  16. Bai, Zhaojun; Demmel, James; Dongarra, Jack; Ruhe, Axel; Vorst, Henk van der (Accessed January 2008), Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide, ISBN 978-0-89871-471-5 Check date values in: |year= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.