# Density of air

The density of air or atmospheric density, denoted ρ (Greek: rho), is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variation in atmospheric pressure, temperature and humidity. At 1013.25 hPa (abs) and 15°C, air has a density of approximately 1.225 kg/m³ (0.001225 g/cm³, 0.0023769 slug/(cu ft), 0.0765 lb/(cu ft)) according to ISA (International Standard Atmosphere).

Air density is a property used in many branches of science, engineering, and industry, including aeronautics;[1][2][3] gravimetric analysis;[4] the air-conditioning[5] industry; atmospheric research and meteorology;[6][7][8] agricultural engineering (modeling and tracking of Soil-Vegetation-Atmosphere-Transfer (SVAT) models);[9][10][11] and the engineering community that deals with compressed air.[12]

Depending on the measuring instruments used, different sets of equations for the calculation of the density of air can be applied. Air is a mixture of gases and the calculations always simplify, to a greater or lesser extent, the properties of the mixture.

## Dry air

The density of dry air can be calculated using the ideal gas law, expressed as a function of temperature and pressure:

${\displaystyle \rho ={\frac {p}{R_{\rm {specific}}T}}}$

where:

${\displaystyle \rho =}$ air density (kg/m³)[note 1]
${\displaystyle p=}$ absolute pressure (Pa)[note 1]
${\displaystyle T=}$ absolute temperature (K)[note 1]
${\displaystyle R_{\rm {specific}}=}$ specific gas constant for dry air (J/(kg·K))[note 1]

The specific gas constant for dry air is 287.058 J/(kg·K) in SI units, and 53.35 (ft·lbf)/(lb·°R) in United States customary and Imperial units. This quantity may vary slightly depending on the molecular composition of air at a particular location.

Therefore:

The following table illustrates the air density–temperature relationship at 1 atm or 101.325 kPa:

Effect of temperature on properties of air
Temperature
T (°C)
Speed of sound
c (m/s)
Density of air
ρ (kg/m3)
Characteristic specific acoustic impedance
z0 (Pa·s/m)
35351.881.1455403.2
30349.021.1644406.5
25346.131.1839409.4
20343.211.2041413.3
15340.271.2250416.9
10337.311.2466420.5
5334.321.2690424.3
0331.301.2922428.0
−5328.251.3163432.1
−10325.181.3413436.1
−15322.071.3673440.3
−20318.941.3943444.6
−25315.771.4224449.1

## Humid air

The addition of water vapor to air (making the air humid) reduces the density of the air, which may at first appear counter-intuitive. This occurs because the molar mass of water (18 g/mol) is less than the molar mass of dry air[note 2] (around 29 g/mol). For any ideal gas, at a given temperature and pressure, the number of molecules is constant for a particular volume (see Avogadro's Law). So when water molecules (water vapor) are added to a given volume of air, the dry air molecules must decrease by the same number, to keep the pressure or temperature from increasing. Hence the mass per unit volume of the gas (its density) decreases.

The density of humid air may be calculated by treating it as a mixture of ideal gases. In this case, the partial pressure of water vapor is known as the vapor pressure. Using this method, error in the density calculation is less than 0.2% in the range of −10 °C to 50 °C. The density of humid air is found by:

${\displaystyle \rho _{\,\mathrm {humid~air} }={\frac {p_{d}}{R_{d}T}}+{\frac {p_{v}}{R_{v}T}}={\frac {p_{d}M_{d}+p_{v}M_{v}}{RT}}\,}$  [13]

where:

${\displaystyle \rho _{\,\mathrm {humid~air} }=}$ Density of the humid air (kg/m³)
${\displaystyle p_{d}=}$ Partial pressure of dry air (Pa)
${\displaystyle R_{d}=}$ Specific gas constant for dry air, 287.058 J/(kg·K)
${\displaystyle T=}$ Temperature (K)
${\displaystyle p_{v}=}$ Pressure of water vapor (Pa)
${\displaystyle R_{v}=}$ Specific gas constant for water vapor, 461.495 J/(kg·K)
${\displaystyle M_{d}=}$ Molar mass of dry air, 0.0289654 kg/mol
${\displaystyle M_{v}=}$ Molar mass of water vapor, 0.018016 kg/mol
${\displaystyle R=}$ Universal gas constant, 8.314 J/(K·mol)

The vapor pressure of water may be calculated from the saturation vapor pressure and relative humidity. It is found by:

${\displaystyle p_{v}=\phi p_{\mathrm {sat} }\,}$

where:

${\displaystyle p_{v}=}$ Vapor pressure of water
${\displaystyle \phi =}$ Relative humidity
${\displaystyle p_{\mathrm {sat} }=}$ Saturation vapor pressure

The saturation vapor pressure of water at any given temperature is the vapor pressure when relative humidity is 100%. One formula [14] used to find the saturation vapor pressure is:

${\displaystyle p_{\mathrm {sat} }=6.102\times 10^{\frac {7.5T}{T+237.8}}}$

where ${\displaystyle T=}$ is in degrees C.

note:
• This equation will give the result of pressure in hPa (100 Pa, equivalent to the older unit millibar; 1 mbar = 0.001 bar = 0.1 kPa)

The partial pressure of dry air ${\displaystyle p_{d}}$ is found considering partial pressure, resulting in:

${\displaystyle p_{d}=p-p_{v}\,}$

Where ${\displaystyle p}$ simply denotes the observed absolute pressure.

## Variation with altitude

To calculate the density of air as a function of altitude, one requires additional parameters. They are listed below, along with their values according to the International Standard Atmosphere, using for calculation the universal gas constant instead of the air specific constant:

${\displaystyle p_{0}=}$ sea level standard atmospheric pressure, 101325 Pa
${\displaystyle T_{0}=}$ sea level standard temperature, 288.15 K
${\displaystyle g=}$ earth-surface gravitational acceleration, 9.80665 m/s²
${\displaystyle L=}$ temperature lapse rate, 0.0065 K/m
${\displaystyle R=}$ ideal (universal) gas constant, 8.31447 J/(mol·K)
${\displaystyle M=}$ molar mass of dry air, 0.0289654 kg/mol

Temperature at altitude ${\displaystyle h}$ meters above sea level is approximated by the following formula (only valid inside the troposphere, no more than ~18 km above Earth's surface (and lower away from Equator)):

${\displaystyle T=T_{0}-Lh\,}$

The pressure at altitude ${\displaystyle h}$ is given by:

${\displaystyle p=p_{0}\left(1-{\frac {Lh}{T_{0}}}\right)^{gM/RL}}$

Density can then be calculated according to a molar form of the ideal gas law:

${\displaystyle \rho ={\frac {pM}{RT}}\,}$

where:

${\displaystyle M=}$ molar mass
${\displaystyle R=}$ ideal gas constant
${\displaystyle T=}$ absolute temperature
${\displaystyle p=}$ absolute pressure

## Composition

 ~0.25% by mass over full atmosphere, locally 0.001%–5% by volume.[21] Gas (and others) Volume by various[15][▽note 2] Volume by CIPM-2007[16] Volume by ASHRAE[17] Volume by Schlatter[18] Volume by ICAO[19] Volume by US StdAtm76[20] ▼ Tap this text to expand or collapse the table ▲ ppmv[▽note 3] percentile ppmv percentile ppmv percentile ppmv percentile ppmv percentile ppmv percentile Nitrogen (N2) 780,800 (78.080%) 780,848 (78.0848%) 780,818 (78.0818%) 780,840 (78.084%) 780,840 (78.084%) 780,840 (78.084%) Oxygen (O2) 209,500 (20.950%) 209,390 (20.9390%) 209,435 (20.9435%) 209,460 (20.946%) 209,476 (20.9476%) 209,476 (20.9476%) Argon (Ar) 9,340 (0.9340%) 9,332 (0.9332%) 9,332 (0.9332%) 9,340 (0.9340%) 9,340 (0.9340%) 9,340 (0.9340%) Carbon dioxide (CO2) 397.8 (0.03978%) 400 (0.0400%) 385 (0.0385%) 384 (0.0384%) 314 (0.0314%) 314 (0.0314%) Neon (Ne) 18.18 (0.001818%) 18.2 (0.00182%) 18.2 (0.00182%) 18.18 (0.001818%) 18.18 (0.001818%) 18.18 (0.001818% ) Helium (He) 5.24 (0.000524%) 5.2 (0.00052%) 5.2 (0.00052%) 5.24 (0.000524%) 5.24 (0.000524%) 5.24 (0.000524% ) Methane (CH4) 1.81 (0.000181%) 1.5 (0.00015%) 1.5 (0.00015%) 1.774 (0.0001774%) 2 (0.0002%) 2 (0.0002%) Krypton (Kr) 1.14 (0.000114%) 1.1 (0.00011%) 1.1 (0.00011%) 1.14 (0.000114%) 1.14 (0.000114%) 1.14 (0.000114%) Hydrogen (H2) 0.55 (0.000055%) 0.5 (0.00005%) 0.5 (0.00005%) 0.56 (0.000056%) 0.5 (0.00005%) 0.5 (0.00005%) Nitrous oxide (N2O) 0.325 (0.0000325%) 0.3 (0.00003%) 0.3 (0.00003%) 0.320 (0.0000320%) 0.5 (0.00005%) - - Carbon monoxide (CO) 0.1 (0.00001% ) 0.2 (0.00002%) 0.2 (0.00002%) - - - - - - Xenon (Xe) 0.09 (0.000009%) 0.1 (0.00001%) 0.1 (0.00001%) 0.09 (0.000009%) 0.087 (0.0000087%) 0.087 (0.0000087%) Nitrogen dioxide (NO2) 0.02 (0.000002%) - - - - - - up to 0.02 up to (0.000002%) - - Iodine (I2) 0.01 (0.000001%) - - - - - - up to 0.01 up to (0.000001%) - - Ammonia (NH3) trace trace - - - - - - - - Sulphur dioxide (SO2) trace trace - - - - - - up to 1.00 up to (0.0001%) - - Ozone (O3) 0.02 to 0.07 [▽note 4] (2 to 7×10−6%) [▽note 4] - - - - 0.01 to 0.10 [▽note 4] (1 to 10×10−6%) [▽note 4] up to 0.02 to 0.07 up to (2 to 7×10−6%) - - Trace to 30 ppm [▽note 6] (----) - - - - 2.9 (0.00029%) - - - - - - Dry air total (air) 1,000,065.265 (100.0065265%) 999,997.100 (99.9997100%) 1,000,000.000 (100.0000000%) 1,000,051.404 (100.0051404%) 999,998.677 (99.9998677%) 1,000,080.147 (100.0080147%) Not included in above dry atmosphere: Water vapor (H2O) ~0.25% by mass over full atmosphere, locally 0.001%–5% by volume.[21] ▽Concentration pertains to the troposphere ▽The NASA total value do not add up to exactly 100% due to roundoff and uncertainty. To normalize, N2 should be reduced by about 51.46 ppmv and O2 by about 13.805 ppmv. ▽ppmv: parts per million by volume (note: volume fraction is equal to mole fraction for ideal gas only, see volume (thermodynamics)) ▽values disregarded for the calculation of total dry air ▽(O3) concentration up to 0.07 ppmv (7×10−6%) in summer and up to 0.02 ppmv (2×10−6%) in winter ▽volumetric composition value adjustment factor (sum of all trace gases, below the (CO2), and adjusts for 30 ppmv)

## Notes

1. In the SI unit system. However, other units can be used.
2. as dry air is a mixture of gases, its molar mass is the weighted average of the molar masses of its components

## References

1. Olson, Wayne M. (2000) AFFTC-TIH-99-01, Aircraft Performance Flight
2. ICAO, Manual of the ICAO Standard Atmosphere (extended to 80 kilometres (262 500 feet)), Doc 7488-CD, Third Edition, 1993, ISBN 92-9194-004-6.
3. Grigorie, T.L., Dinca, L., Corcau J-I. and Grigorie, O. (2010) Aircrafts’ [sic] Altitude Measurement Using Pressure Information:Barometric Altitude and Density Altitude
4. A., Picard, R.S., Davis, M., Gläser and K., Fujii (CIPM-2007) Revised formula for the density of moist air
5. S. Herrmann, H.-J. Kretzschmar, and D.P. Gatley (2009), ASHRAE RP-1485 Final Report
6. F.R. Martins, R.A. Guarnieri e E.B. Pereira, (2007) O aproveitamento da energia eólica (The wind energy resource).
7. Andrade, R.G., Sediyama, G.C., Batistella, M., Victoria, D.C., da Paz, A.R., Lima, E.P., Nogueira, S.F. (2009) Mapeamento de parâmetros biofísicos e da evapotranspiração no Pantanal usando técnicas de sensoriamento remoto
8. Marshall, John and Plumb, R. Alan (2008), Atmosphere, ocean, and climate dynamics: an introductory text ISBN 978-0-12-558691-7.
9. Pollacco, J. A., and B. P. Mohanty (2012), Uncertainties of Water Fluxes in Soil-Vegetation-Atmosphere Transfer Models: Inverting Surface Soil Moisture and Evapotranspiration Retrieved from Remote Sensing, Vadose Zone Journal, 11(3), doi:10.2136/vzj2011.0167.
10. Shin, Y., B. P. Mohanty, and A.V.M. Ines (2013), Estimating Effective Soil Hydraulic Properties Using Spatially Distributed Soil Moisture and Evapotranspiration, Vadose Zone Journal, 12(3), doi:10.2136/vzj2012.0094.
11. Saito, H., J. Simunek, and B. P. Mohanty (2006), Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone, Vadose Zone J. 5: 784-800.
12. Perry, R.H. and Chilton, C.H., eds., Chemical Engineers’ Handbook, 5th ed., McGraw-Hill, 1973.
13. Shelquist, R (2009) Equations - Air Density and Density Altitude
14. Shelquist, R (2009) Algorithms - Schlatter and Baker
15. Partial sources for figures: Base constituents, Nasa earth factsheet, (updated 2014-03). Carbon dioxide, NOAA Earth System Research Laboratory, (updated 2014-03). Methane and Nitrous Oxide, The NOAA Annual greenhouse gas index(AGGI) Greenhouse gas-Figure 2, (updated 2014-03).
16. A., Picard, R.S., Davis, M., Gläser and K., Fujii (2008), Revised formula for the density of moist air (CIPM-2007), Metrologia 45 (2008) 149–155 doi:10.1088/0026-1394/45/2/004, pg 151 Table 1
17. S. Herrmann, H.-J. Kretzschmar, and D.P. Gatley (2009), ASHRAE RP-1485 Final Report Thermodynamic Properties of Real Moist Air,Dry Air, Steam, Water, and Ice pg 16 Table 2.1 and 2.2
18. Thomas W. Schlatter (2009), Atmospheric Composition and Vertical Structure pg 15 Table 2
19. ICAO, Manual of the ICAO Standard Atmosphere (extended to 80 kilometres (262 500 feet)), Doc 7488-CD, Third Edition, (1993), ISBN 92-9194-004-6. pg E-x Table B
20. U.S. Committee on Extension to the Standard Atmosphere (COESA) (1976) U.S. Standard Atmosphere, 1976 pg 03 Table 3
21. Wallace, John M. and Peter V. Hobbs. Atmospheric Science; An Introductory Survey.Elsevier. Second Edition, 2006. ISBN 978-0-12-732951-2. Chapter 1