Computational learning theory

In computer science, computational learning theory (or just learning theory) is a subfield of artificial intelligence devoted to studying the design and analysis of machine learning algorithms.[1]


Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible. The algorithm takes these previously labeled samples and uses them to induce a classifier. This classifier is a function that assigns labels to samples, including samples that have not been seen previously by the algorithm. The goal of the supervised learning algorithm is to optimize some measure of performance such as minimizing the number of mistakes made on new samples.

In addition to performance bounds, computational learning theory studies the time complexity and feasibility of learning. In computational learning theory, a computation is considered feasible if it can be done in polynomial time. There are two kinds of time complexity results:

  • Positive results  Showing that a certain class of functions is learnable in polynomial time.
  • Negative results  Showing that certain classes cannot be learned in polynomial time.

Negative results often rely on commonly believed, but yet unproven assumptions, such as:

There are several different approaches to computational learning theory based on making different assumptions about the inference principles used to generalize from limited data. This includes different definitions of probability (see frequency probability, Bayesian probability) and different assumptions on the generation of samples. The different approaches include:

While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief networks.

See also



  • Angluin, D. 1992. Computational learning theory: Survey and selected bibliography. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing (May 1992), pages 351–369.
  • D. Haussler. Probably approximately correct learning. In AAAI-90 Proceedings of the Eight National Conference on Artificial Intelligence, Boston, MA, pages 1101–1108. American Association for Artificial Intelligence, 1990.

VC dimension

Feature selection

Inductive inference

  • Gold, E. Mark (1967). "Language identification in the limit" (PDF). Information and Control. 10 (5): 447–474. doi:10.1016/S0019-9958(67)91165-5.

Optimal O notation learning

Negative results

Boosting (machine learning)

Occam Learning

Probably approximately correct learning

Error tolerance


  • D.Haussler, M.Kearns, N.Littlestone and M. Warmuth, Equivalence of models for polynomial learnability, Proc. 1st ACM Workshop on Computational Learning Theory, (1988) 42-55.
  • Pitt, L.; Warmuth, M. K. (1990). "Prediction-Preserving Reducibility". Journal of Computer and System Sciences. 41 (3): 430–467. doi:10.1016/0022-0000(90)90028-J.

A description of some of these publications is given at important publications in machine learning.

Distribution Learning Theory

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.