Borsuk–Ulam theorem

In mathematics, the Borsuk–Ulam theorem states that every continuous function from an n-sphere into Euclidean n-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they are in exactly opposite directions from the sphere's center.

Formally: if is continuous then there exists an such that: .

The case can be illustrated by saying that there always exist a pair of opposite points on the Earth's equator with the same temperature. The same is true for any circle. This assumes the temperature varies continuously.

The case is often illustrated by saying that at any moment, there is always a pair of antipodal points on the Earth's surface with equal temperatures and equal barometric pressures.

The Borsuk–Ulam theorem has several equivalent statements in terms of odd functions. Recall that is the n-sphere and is the n-ball:

  • If is a continuous odd function, then there exists an such that: .
  • If is a continuous function which is odd on (the boundary of ), then there exists an such that: .


According to Jiří Matoušek (2003, p. 25), the first historical mention of the statement of the Borsuk–Ulam theorem appears in Lyusternik & Shnirel'man (1930). The first proof was given by Karol Borsuk (1933), where the formulation of the problem was attributed to Stanislaw Ulam. Since then, many alternative proofs have been found by various authors, as collected by Steinlein (1985).

Equivalent statements

The following statements are equivalent to the Borsuk–Ulam theorem.[1]

With odd functions

A function is called odd (aka antipodal or antipode-preserving) if for every : .

The Borsuk–Ulam theorem is equivalent to the following statement: A continuous odd function from an n-sphere into Euclidean n-space has a zero. PROOF:

  • If the theorem is correct, then it is specifically correct for odd functions, and for an odd function, iff . Hence every odd continuous function has a zero.
  • For every continuous function , the following function is continuous and odd: . If every odd continuous function has a zero, then has a zero, and therefore, . Hence the theorem is correct.

With retractions

Define a retraction as a function The Borsuk–Ulam theorem is equivalent to the following claim: there is no continuous odd retraction.

Proof: If the theorem is correct, then every continuous odd function from must include 0 in its range. However, so there cannot be a continuous odd function whose range is .

Conversely, if it is incorrect, then there is a continuous odd function with no zeroes. Then we can construct another odd function by:

since has no zeroes, is well-defined and continuous. Thus we have a continuous odd retraction.


1-dimensional case

The 1-dimensional case can easily be proved using the intermediate value theorem (IVT).

Let be an odd real-valued continuous function on a circle. Pick an arbitrary . If then we are done. Otherwise, without loss of generality, But Hence, by the IVT, there is a point between and at which

General case - algebraic topology proof

Assume that is an odd continuous function with (the case is treated above, the case can be handled using basic covering theory). By passing to orbits under the antipodal action, we then get an induced function which induces an isomorphism on fundamental groups. By the Hurewicz theorem, the induced map on cohomology with coefficients,

sends to . But then we get that is sent to , a contradiction.[2]

One can also show the stronger statement that any odd map has odd degree and then deduce the theorem from this result.

General case - combinatorial proof

The BorsukUlam theorem can be proved from Tucker's lemma.[1][3][4]

Let be a continuous odd function. Because g is continuous on a compact domain, it is uniformly continuous. Therefore, for every , there is a such that, for every two points of which are within of each other, their images under g are within of each other.

Define a triangulation of with edges of length at most . Label each vertex of the triangulation with a label in the following way:

  • The absolute value of the label is the index of the coordinate with the highest absolute value of g: .
  • The sign of the label is the sign of g, so that: .

Because g is odd, the labeling is also odd: . Hence, by Tucker's lemma, there are two adjacent vertices with opposite labels. Assume w.l.o.g. that the labels are . By the definition of l, this means that in both and , coordinate #1 is the largest coordinate: in this coordinate is positive while in it is negative. By the construction of the triangulation, the distance between and is at most , so in particular (since and have opposite signs) and so . But since the largest coordinate of and is coordinate #1, this means that for each . So , where is some constant depending on and the norm which you have chosen.

The above is true for every ; hence there must be a point u in which .


  • No subset of is homeomorphic to
  • The ham sandwich theorem: For any compact sets A1, ..., An in we can always find a hyperplane dividing each of them into two subsets of equal measure.

Equivalent results

Above we showed how to prove the Borsuk–Ulam theorem from Tucker's lemma. The converse is also true: it is possible to prove Tucker's lemma from the Borsuk–Ulam theorem. Therefore, these two theorems are equivalent. There are several fixed-point theorems which come in three equivalent variants: an algebraic topology variant, a combinatorial variant and a set-covering variant. Each variant can be proved separately using totally different arguments, but each variant can also be reduced to the other variants in its row. Additionally, each result in the top row can be deduced from the one below it in the same column.[5]

Algebraic topologyCombinatoricsSet covering
Brouwer fixed-point theoremSperner's lemmaKnaster–Kuratowski–Mazurkiewicz lemma
Borsuk–Ulam theoremTucker's lemmaLusternik–Schnirelmann theorem


  • In the original theorem, the domain of the function f is the unit n-sphere (the boundary of the unit n-ball). In general, it is true also when the domain of f is the boundary of any open bounded symmetric subset of containing the origin (Here, symmetric means that if x is in the subset then -x is also in the subset).[6]
  • Consider the function A which maps a point to its antipodal point: Note that The original theorem claims that there is a point x in which In general, this is true also for every function A for which [7] However, in general this is not true for other functions A.[8]

See also


  1. Prescott, Timothy (2002). "Extensions of the Borsuk–Ulam Theorem (Thesis)". Harvey Mudd College. CiteSeerX Cite journal requires |journal= (help)
  2. Joseph J. Rotman, An Introduction to Algebraic Topology (1988) Springer-Verlag ISBN 0-387-96678-1 (See Chapter 12 for a full exposition.)
  3. Freund, Robert M; Todd, Michael J (1982). "A constructive proof of Tucker's combinatorial lemma". Journal of Combinatorial Theory, Series A. 30 (3): 321–325. doi:10.1016/0097-3165(81)90027-3.
  4. Simmons, Forest W.; Su, Francis Edward (2003). "Consensus-halving via theorems of BorsukUlam and Tucker". Mathematical Social Sciences. 45: 15–25. doi:10.1016/s0165-4896(02)00087-2. hdl:10419/94656.
  5. Nyman, Kathryn L.; Su, Francis Edward (2013), "A Borsuk–Ulam equivalent that directly implies Sperner's lemma", American Mathematical Monthly, 120 (4): 346–354, doi:10.4169/amer.math.monthly.120.04.346, MR 3035127
  6. Hazewinkel, Michiel, ed. (2001) [1994], "Borsuk fixed-point theorem", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  7. Yang, Chung-Tao (1954). "On Theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson, I". Annals of Mathematics. 60 (2): 262–282. doi:10.2307/1969632. JSTOR 1969632.
  8. Jens Reinhold, Faisal; Sergei Ivanov. "Generalization of Borsuk-Ulam". Math Overflow. Retrieved 18 May 2015.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.