Boeing X-53 Active Aeroelastic Wing

The X-53 Active Aeroelastic Wing (AAW) development program is a completed American research project that was undertaken jointly by the Air Force Research Laboratory (AFRL), Boeing Phantom Works and NASA's Dryden Flight Research Center, where the technology was flight tested on a modified McDonnell Douglas F/A-18 Hornet. Active Aeroelastic Wing Technology is a technology that integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This program was the first full-scale proof of AAW technology.

X-53 configured F/A-18
Role Technology Demonstrator
National origin United States
Manufacturer McDonnell Douglas
Northrop Corporation
First flight 15 November 2002
Primary user NASA
Number built 1
Developed from McDonnell Douglas F/A-18 Hornet


Gerry Miller and Jan Tulinius led the development of the initial concept during wind tunnel testing in the mid 1980s under Air Force contract.[1] The designation "X-52" was skipped in sequence to avoid confusion with Boeing's B-52 Stratofortress bomber. Ed Pendleton served as the Air Force's program manager. [2]

The pre-production version of the F/A-18 was an ideal host aircraft for proving AAW technology, a relatively high wing aspect ratio for a fighter, with adequate strength, but no additional stiffness was added for static aeroelastic issues. The X-53 F/A-18 was modified to allow two leading edge control surfaces to work in concert with its two trailing edge surfaces to control wing aeroelastic twist and provide excellent high speed rolling performance.

AAW developed from the observation that the aeroelasticity can be offset by the deployment of other control surfaces on the wing. In particular, almost all modern aircraft use some form of slat along the wing's leading edge to provide more lift during certain portions of flight. By deploying the slats at the same time as the ailerons, the torque can be equalled out on either side of the spars, eliminating the twisting, which improves the control authority of the ailerons. This means that less aileron input is needed to produce a given motion, which, in turn, will reduce aileron drag and its associated negative control aspects. Better yet, the wing is already designed to be extremely strong in the lift component, eliminating the torque requires lift, converting the undesired torque into an acceptable lift component.

But if one can use the controls to eliminate the twisting and its negative effects on control input, the next step is to deliberately introduce a twisting component to improve the control authority. When applied correctly, the wing will twist less and in an opposite direction to a conventional wing during maneuvering.[3] So this change, which can be accomplished in software, benefits overall performance.

Flight testing

To test the AAW theory, NASA and the USAF agreed to fund development of a single demonstrator, based on the F/A-18. Work started by taking an existing F/A-18 airframe modified with a preproduction wing, and added an outboard leading edge flap drive system and an updated flight control computer. Active aeroelastic wing control laws were developed to flex the wing, and flight instrumentation was used to accurately measure the aeroelastic performance of the wing planform. Flight software was then modified for flight testing, and the aircraft first flew in modified form on November 15th, 2002.[4] The aircraft successfully proved the viability of the concept in full scale during roll maneuver testing in 2004–2005. The test aircraft was re-designated X-53 on August 16, 2006, per memo by USAF Deputy Chief of Staff, Strategic Plans and Programs.[1]


General characteristics

  • Crew: 1
  • Wingspan: 38 ft 5 in (11.71 m)
  • Height: 15 ft 3 in (4.65 m)
  • Max takeoff weight: 39,000 lb (17,690 kg)
  • Powerplant: 2 × General Electric F404-GE-400 low-bypass turbofan engines, 16,000 lbf (71 kN) thrust each


  • Maximum speed: 1,188 mph (1,912 km/h, 1,032 kn)
  • Service ceiling: 50,000 ft (15,000 m)

The leading edge flap drive system was modified at McDonnell Douglas (now Boeing Phantom works) using an outboard actuation unit developed by Moog Inc. AAW flight control laws were programmed into a research flight control computer modified to include independently actuated outboard leading edge control surfaces.[5]

See also


  1. Active Aeroelastic Wing flight research vehicle receives X-53 designation Archived 2011-06-05 at the Wayback Machine
  2. Pendleton, E., Griffin, K., Kehoe, M., and Perry, B., "A Flight Research Program for Active Aeroelastic Wing Technology ," Paper 96-1574, Proceedings of the 37th AIAA Structures, Structural Dynamics, and Materials Conference, Salt Lake City, Utah, 15–17 April 1996.
  3. Active Aeroelastic Wing Archived 18 June 2006 at the Wayback Machine
  4. "Boeing F/A-18 with Active Aeroelastic Wing Completes First Flight". Boeing. 18 November 2002. Archived from the original on 6 November 2011. Retrieved 30 June 2011.
  5. NASA F/A-18 Active Aeroelastic Wing Fact Sheet
Further Reading
  1. Miller, G.D., "Active Flexible Wing (AFW) Technology," Air Force Wright Aeronautical Laboratories TR-87-3096, February, 1988.
  2. Miller, G.D., "AFW Design Methodology Study", Rockwell-Aerospace Report No. NA 94-1731, December 1994.
  3. Pendleton, E., Griffin, K., Kehoe, M., and Perry, B., "A Flight Research Program for Active Aeroelastic Wing Technology ," Paper 96-1574, Proceedings of the 37th AIAA Structures, Structural Dynamics, and Materials Conference, Salt Lake City, Utah, 15–17 April 1996.
  4. Zillmer, S., "Integrated Multidisciplinary Optimization for Aeroelastic Wing Design,” Wright Laboratory TR-97-3087, August 1997.
  5. Zillmer, S., "Integrated Structure / Maneuver Design Procedure for Active Aeroelastic Wings, User’s Manual,” Wright Laboratory TR-97-3087, March 1997.
  6. Pendleton, E., Bessette, D., Field P., Miller, G., and Griffin, K., "Active Aeroelastic Wing Flight Research Program: Technical Program & Model Analytical Development ," Journal of Aircraft, Volume 37, Number 4, July–August 2000.
  7. Pendleton, E., " Active Aeroelastic Wing,” AFRL Technology Horizons, Selected Science and Technology Articles, Vol. 1, No. 2, June 2000.
  8. Edmund W. Pendleton, "How Active Aeroelastic Wings are a Return to Aviation’s Beginning and a Small Step to Future Bird-like Wings," Invited Paper, Japan Society of Aeronautical and Space Sciences Aircraft Symposium, Sendai, Japan, 11 October 2000.
  9. The Boeing Company, “The Active Aeroelastic Wing Flight Research Program (The X-53) Final Report”, Volume 1 and II, AFRL-VA-WP-TR-2005-3082, October 2005.
  10. Pendleton, E., Flick, P., Voracek, D., Reichenbach, E., Griffin, K., Paul, D.,“The X-53,A Summary of the Active Aeroelastic Wing Flight Research Program,” Paper 07-1855, Proceedings of the 48th AIAA Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, 23–26 April 2007.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.