Boeing 787 Dreamliner

The Boeing 787 Dreamliner is an American long-haul, mid-size wide-body, twin-engine jet airliner manufactured by Boeing Commercial Airplanes. Its variants seat 242 to 330 passengers in typical two-class seating configurations. It is the first airliner with an airframe constructed primarily of composite materials. The 787 was designed to be 20% more fuel-efficient than the Boeing 767, which it was intended to replace. The 787 Dreamliner's distinguishing features include mostly electrical flight systems, raked wingtips, and noise-reducing chevrons on its engine nacelles.

Boeing 787 Dreamliner
A Boeing 787-9, the midsize variant, of All Nippon Airways, the first and largest 787 operator
Role Wide-body twin-engine jet airliner
National origin United States
Manufacturer Boeing Commercial Airplanes
First flight December 15, 2009
Introduction October 26, 2011, with All Nippon Airways
Status In service
Primary users All Nippon Airways
Japan Airlines
American Airlines
United Airlines
Produced 2007–present
Number built 918 as of November 2019[1]
Program cost US$32 billion (Boeing's expenditure as of 2011)[2]
Unit cost
787-8: US$248.3M (2019),
787-9: $292.5M (2019),
787-10: $338.4M (2019)[3]

The aircraft's initial designation was the 7E7, prior to its renaming in January 2005. The first 787 was unveiled in a roll-out ceremony on July 8, 2007, at Boeing's Everett factory. Development and production of the 787 has involved a large-scale collaboration with numerous suppliers worldwide. Final assembly takes place at the Boeing Everett Factory in Everett, Washington, and at the Boeing South Carolina factory in North Charleston, South Carolina. Originally planned to enter service in May 2008, the project experienced multiple delays. The airliner's maiden flight took place on December 15, 2009, and flight testing was completed in mid-2011. Boeing has reportedly spent $32 billion on the 787 program.

Final US Federal Aviation Administration (FAA) and European Aviation Safety Agency (EASA) type certification was received in August 2011 and the first 787-8 was delivered in September 2011. It entered commercial service on October 26, 2011, with launch customer All Nippon Airways. The stretched 787-9 variant, which is 20 feet (6.1 m) longer and can fly 450 nautical miles (830 km) farther than the -8, first flew in September 2013. Deliveries of the 787-9 began in July 2014; it entered commercial service on August 7, 2014, with All Nippon Airways, with 787-9 launch customer Air New Zealand following two days later. As of October 2019, the 787 had orders for 1,455 aircraft from 72 identified customers.[1]

The aircraft has suffered from several in-service problems related to its lithium-ion batteries, including fires on board during commercial service. These systems were reviewed by both the FAA and the Japan Civil Aviation Bureau. The FAA issued a directive in January 2013 that grounded all 787s in the US and other civil aviation authorities followed suit. After Boeing completed tests on a revised battery design, the FAA approved the revised design and lifted the grounding in April 2013; the 787 returned to passenger service later that month.



During the late 1990s, Boeing considered replacement aircraft programs as sales of the 767 and 747-400 slowed. Two new aircraft were proposed. The 747X would have lengthened the 747-400 and improved efficiency, and the Sonic Cruiser would have achieved 15% higher speeds (approximately Mach 0.98) while burning fuel at the same rate as the 767.[4] Market interest for the 747X was tepid; however, several major American airlines, including Continental Airlines, showed initial enthusiasm for the Sonic Cruiser, although concerns about the operating cost were also expressed.[5] The global airline market was disrupted by the September 11, 2001, attacks and increased petroleum prices, making airlines more interested in efficiency than speed. The worst-affected airlines, those in the United States, had been considered the most likely customers of the Sonic Cruiser; thus the Sonic Cruiser was officially cancelled on December 20, 2002. On January 29, 2003 Boeing announced an alternative product, the 7E7, using Sonic Cruiser technology in a more conventional configuration.[6][7] The emphasis on a smaller midsize twinjet rather than a large 747-size aircraft represented a shift from hub-and-spoke theory toward the point-to-point theory,[8] in response to analysis of focus groups.[9]

Randy Baseler, Boeing Commercial Airplanes VP Marketing stated that airport congestion comes from a large numbers of regional jets and small single-aisles, flying to destinations where a 550-seat A380 would be too large; to reduce the number of departures, smaller airplanes can increase 20% in size and airline hubs can be avoided with point-to-point transit.[10]

In 2003, a recent addition to the Boeing board of directors, James McNerney (who would become Boeing's Chairman and CEO in 2005), supported the need for a new aircraft to regain market share from Airbus. The directors on Boeing's board, Harry Stonecipher (Boeing's President and CEO) and John McDonnell, issued an ultimatum to "develop the plane for less than 40 percent of what the 777 had cost to develop 13 years earlier, and build each plane out of the gate for less than 60 percent of the 777’s unit costs in 2003", and approved a development budget estimated at US$7 billion as Boeing management claimed that they would "require subcontractors to foot the majority of costs". Boeing Commercial Airplanes president Alan Mulally, who had previously served as general manager of the 777 program, contrasted the difference in the approval process by the board between the 777 and 787 saying “In the old days, you would go to the board and ask for X amount of money, and they’d counter with Y amount of money, and then you’d settle on a number, and that’s what you’d use to develop the plane. These days, you go to the board, and they say, ‘Here’s the budget for this airplane, and we’ll be taking this piece of it off the top, and you get what’s left; don’t f**k up.’” [11]

The replacement for the Sonic Cruiser project was named "7E7"[12] (with a development code name of "Y2"). Technology from the Sonic Cruiser and 7E7 was to be used as part of Boeing's project to replace its entire airliner product line, an endeavor called the Yellowstone Project (of which the 7E7 became the first stage).[13] Early concept images of the 7E7 included rakish cockpit windows, a dropped nose and a distinctive "shark-fin" tail.[14] The "E" was said to stand for various things, such as "efficiency" or "environmentally friendly"; however, in the end, Boeing said that it merely stood for "Eight".[6] In July 2003, a public naming competition was held for the 7E7, for which out of 500,000 votes cast online the winning title was Dreamliner.[15] Other names included eLiner, Global Cruiser, and Stratoclimber.[16][17]

On April 26, 2004, Japanese airline All Nippon Airways (ANA) became the launch customer for the 787, announcing a firm order for 50 aircraft with deliveries to begin in late 2008.[18] The ANA order was initially specified as 30 787-3, 290–330 seat, one-class domestic aircraft, and 20 787-8, long-haul, 210–250 seat, two-class aircraft for regional international routes such as Tokyo Narita–Beijing, and could perform routes to cities not previously served, such as Denver, Moscow, and New Delhi.[19] The 787-3 and 787-8 were to be the initial variants, with the 787-9 entering service in 2010.[20]

The 787 was designed to be the first production airliner with the fuselage comprising one-piece composite barrel sections instead of the multiple aluminum sheets and some 50,000 fasteners used on existing aircraft.[21][22] Boeing selected two new engines to power the 787, the Rolls-Royce Trent 1000 and General Electric GEnx.[6] Boeing stated the 787 would be approximately 20 percent more fuel-efficient than the 767,[23] with approximately 40 percent of the efficiency gain from the engines,[24] plus gains from aerodynamic improvements,[25] increased use of lighter-weight composite materials, and advanced systems.[20] The airframe underwent extensive structural testing during its design.[26][27] The 787-8 and -9 were intended to have a certified 330 minute ETOPS capability.[28]

During the design phase, the 787 underwent extensive wind tunnel testing at Boeing's Transonic Wind Tunnel, QinetiQ's five-meter wind tunnel at Farnborough, United Kingdom, and NASA Ames Research Center's wind tunnel, as well as at the French aerodynamics research agency, ONERA. The final styling was more conservative than earlier proposals, with the fin, nose, and cockpit windows changed to a more conventional form. By 2005, customer-announced orders and commitments for the 787 reached 237 aircraft.[29] Boeing initially priced the 787-8 variant at US$120 million, a low figure that surprised the industry. In 2007, the list price was US$146–151.5 million for the 787-3, US$157–167 million for the 787-8 and US$189–200 million for the 787-9.[30]

Manufacturing and suppliers

On December 16, 2003, Boeing announced that the 787 would be assembled in its factory in Everett, Washington.[6] Instead of conventionally building the aircraft from the ground up, final assembly employed 800 to 1,200 people to join completed subassemblies and to integrate systems.[31] Boeing assigned global subcontractors to do more assembly work, delivering completed subassemblies to Boeing for final assembly. This approach was intended to result in a leaner, simpler assembly line and lower inventory,[32] with pre-installed systems reducing final assembly time by three-quarters to three days.[33][34] Subcontractors had early difficulties procuring needed parts and finishing subassemblies on schedule, leaving remaining assembly work for Boeing to complete as "traveled work."[35][36] In 2010, Boeing considered in-house construction of the 787-9 tail; the tail of the 787-8 is made by Alenia.[37] The 787 was unprofitable for some subcontractors; Alenia's parent company, Finmeccanica, had a total loss of €750 million on the project by 2013.[38]

Subcontracted assemblies included wing and center wing box (Mitsubishi Heavy Industries, Japan; Subaru Corporation, Japan);[39] horizontal stabilizers (Alenia Aeronautica, Italy; Korea Aerospace Industries, South Korea);[40] fuselage sections (Global Aeronautica, Italy; Boeing, North Charleston, US; Kawasaki Heavy Industries, Japan; Spirit AeroSystems, Wichita, US; Korean Air, South Korea);[41][42][43] passenger doors (Latécoère, France); cargo doors, access doors, and crew escape door (Saab AB, Sweden); software development (HCL Enterprise India);[44] floor beams (TAL Manufacturing Solutions Limited, India);[45][46] wiring (Labinal, France);[47] wing-tips, flap support fairings, wheel well bulkhead, and longerons (Korean Air, South Korea);[48] landing gear (Messier-Bugatti-Dowty, UK/France);[49][50] and power distribution and management systems, air conditioning packs (Hamilton Sundstrand, Connecticut, US).[47][51]

To speed up deliveries, Boeing modified four used 747-400s into 747 Dreamlifters to transport 787 wings, fuselage sections, and other smaller parts. Japanese industrial participation was key on the project. Japanese companies co-designed and built 35% of the aircraft; the first time that outside firms played a key design role on Boeing airliner wings. The Japanese government supported development with an estimated US$2 billion in loans.[52] On April 26, 2006, Japanese manufacturer Toray Industries and Boeing signed a production agreement involving US$6 billion worth of carbon fiber, extending a 2004 contract.[6] In May 2007, final assembly on the first 787 began at Everett.[53]

Boeing worked to trim excess weight since assembly of the first airframe began; in late 2006, the first six 787s were stated to be overweight, with the first aircraft being 5,000 lb (2,300 kg) heavier than specified.[54] The seventh and subsequent aircraft would be the first optimized 787-8s expected to meet all goals.[55][56] Accordingly, some parts were redesigned to include more use of titanium.[57][58] Early built 787s were overweight and some carriers decided to take later aircraft; in early 2015, Boeing was trying to sell 10 such aircraft.[59] In July 2015, Reuters reported that Boeing was considering reducing the use of titanium to reduce construction costs.[60]

Boeing planned a first flight by the end of August 2007 and premiered the first 787 (registered N787BA) at a rollout ceremony on July 8, 2007.[61] The 787 had 677 orders at this time, which is more orders from launch to roll-out than any previous wide-body airliner.[62] The major systems were not installed at the time; many parts were attached with temporary non-aerospace fasteners requiring replacement with flight fasteners later.[63]

In September 2007, Boeing announced a three-month delay, blaming a shortage of fasteners as well as incomplete software.[64] On October 10, 2007, a second three-month delay to the first flight and a six-month delay to first deliveries was announced due to supply chain problems, a lack of documentation from overseas suppliers, and flight guidance software delays.[65][66] Less than a week later, Mike Bair, the 787 program manager was replaced.[67] On January 16, 2008, Boeing announced a third three-month delay to the first flight of the 787, citing insufficient progress on "traveled work."[68] On March 28, 2008, in an effort to gain more control over the supply chain, Boeing announced plans to buy Vought Aircraft Industries' interest in Global Aeronautica; a later agreement was also made to buy Vought's factory in North Charleston.[69]

On April 9, 2008, a fourth delay was announced, shifting the maiden flight to the fourth quarter of 2008, and delaying initial deliveries by around 15 months to the third quarter of 2009. The 787-9 variant was postponed to 2012 and the 787-3 variant was to follow at a later date.[70] On November 4, 2008, a fifth delay was announced due to incorrect fastener installation and the Boeing machinists strike, stating that the first test flight would not occur in the fourth quarter of 2008.[71][72] After assessing the program schedule with suppliers,[73] in December 2008, Boeing stated that the first flight was delayed until the second quarter of 2009.[74] Airlines, such as United Airlines and Air India, stated their intentions to seek compensation from Boeing for the delays.[75][76]

Pre-flight ground testing

As Boeing worked with its suppliers towards production, the design proceeded through a series of test goals. On August 23, 2007, a crash test involving a vertical drop of a partial composite fuselage section from about 15 ft (4.6 m) onto a 1 in (25 mm)-thick steel plate occurred in Mesa, Arizona;[77][78] the results matched predictions, allowing modeling of various crash scenarios using computational analysis instead of further physical tests.[79][80] While critics had expressed concerns that a composite fuselage could shatter and burn with toxic fumes during crash landings, test data indicated no greater toxicity than conventional metal airframes.[81][82] The crash test was the third in a series of demonstrations conducted to match FAA requirements, including additional certification criteria due to the wide-scale use of composite materials.[78] The 787 meets the FAA's requirement that passengers have at least as good a chance of surviving a crash landing as they would with current metal airliners.[83]

On August 7, 2007, on-time certification of the Rolls-Royce Trent 1000 engine by European and US regulators was received.[84] The alternative GE GEnx-1B engine achieved certification on March 31, 2008.[85] On June 20, 2008, the first aircraft was powered up, for testing the electrical supply and distribution systems.[86] A non-flightworthy static test airframe was built; on September 27, 2008, the fuselage was successfully tested at 14.9 psi (102.7 kPa) differential, which is 150 percent of the maximum pressure expected in commercial service.[87] In December 2008, the 787's maintenance program was passed by the FAA.[88]

On May 3, 2009, the first test 787 was moved to the flight line following extensive factory-testing, including landing gear swings, systems integration verification, and a total run-through of the first flight.[89] On May 4, 2009, a press report indicated a 10–15% range reduction, about 6,900 nmi (12,800 km) instead of the originally promised 7,700 to 8,200 nmi (14,800–15,700 km), for early aircraft that were about 8% overweight. Substantial redesign work was expected to correct this, which would complicate increases in production rates;[90] Boeing stated the early 787-8s would have a range of almost 8,000 nmi (15,000 km).[91] As a result, some airlines reportedly delayed deliveries of 787s in order to take later planes that may be closer to the original estimates.[92] Boeing expected to have the weight issues addressed by the 21st production model.[93]

On June 15, 2009, during the Paris Air Show, Boeing said that the 787 would make its first flight within two weeks. However, on June 23, 2009, the first flight was postponed due to structural reasons.[94][95] Boeing provided an updated 787 schedule on August 27, 2009, with the first flight planned to occur by the end of 2009 and deliveries to begin at the end of 2010.[96] The company expected to write off US$2.5 billion because it considered the first three Dreamliners built unsellable and suitable only for flight tests.[97] On October 28, 2009, Boeing selected Charleston, SC as the site for a second 787 production line, after soliciting bids from multiple states.[98] On December 12, 2009, the first 787 completed high speed taxi tests, the last major step before flight.[99][100]

Flight test program

On December 15, 2009, Boeing conducted the 787-8 maiden flight from Paine Field in Everett, Washington, at 10:27 am PST and landed three hours later at 1:33 p.m. at Seattle's Boeing Field, after reaching 180 kn (333 km/h) and 13,200 ft (4,000 m).[101] Originally scheduled for 51/2 hours, the test flight was shortened to three hours with the pilots wanting to complete the flight under visual meteorological conditions while visibility and cloud ceiling were low.[102] The 6,800h, six-aircraft ground and flight test programme was scheduled in eight and a half months, the fastest certification campaign for a new Boeing commercial design.[103]

The flight test program comprised six aircraft, ZA001 through ZA006, four with Rolls-Royce Trent 1000 engines and two with GE GEnx-1B64 engines. The second 787, ZA002 in All Nippon Airways livery, flew to Boeing Field on December 22, 2009, to join the flight test program;[104][105] the third 787, ZA004 made its first flight on February 24, 2010, followed by ZA003 on March 14, 2010.[106] On March 24, 2010, flutter and ground effects testing was completed, clearing the aircraft to fly its entire flight envelope.[107] On March 28, 2010, the 787 completed the ultimate wing load test, which requires that the wings of a fully assembled aircraft be loaded to 150% of design limit load and held for 3 seconds. The wings were flexed approximately 25 ft (7.6 m) upward during the test.[108] Unlike past aircraft, the wings were not tested to failure.[109][110] On April 7, data showed the test had been a success.[111]

On April 23, 2010, the newest 787, ZA003, arrived at the McKinley Climatic Laboratory hangar at Eglin Air Force Base, Florida, for extreme weather testing in temperatures ranging from 115 to −45 °F (46 to −43 °C), including takeoff preparations at both temperature extremes.[112] ZA005, the fifth 787 and the first with GEnx engines, began ground engine tests in May 2010,[113] and made its first flight on June 16, 2010.[114] In June 2010, gaps were discovered in the horizontal stabilizers of test aircraft due to improperly installed shims; all aircraft were inspected and repaired.[115] That same month, a 787 experienced its first in-flight lightning strike; inspections found no damage.[116] As composites can have as little as 1/1,000th the electrical conductivity of aluminum, conductive material is added to alleviate potential risks and to meet FAA requirements.[81][117][118] The FAA also planned requirement changes to help the 787 show compliance.[119]

The 787 made its first appearance at an international air show at the Farnborough Airshow, United Kingdom, on July 18, 2010.[120]

On August 2, 2010, a Trent 1000 engine suffered a blowout at Rolls-Royce's test facility during ground testing.[121] This engine failure caused a reevaluation of the timeline for installing Trent 1000 engines; on August 27, 2010, Boeing stated that the first delivery to launch customer ANA would be delayed until early 2011.[122][123] That same month, Boeing faced compensation claims from airlines owing to ongoing delivery delays.[124] In September 2010, it was reported that a further two 787s might join the test fleet for a total of eight flight test aircraft.[125] On September 10, 2010, a partial engine surge occurred in a Trent engine on ZA001 at Roswell.[126] On October 4, 2010, the sixth 787, ZA006 joined the test program with its first flight.[127]

On November 9, 2010, the second 787, ZA002 made an emergency landing at Laredo International Airport, Texas, after smoke and flames were detected in the main cabin during a test flight.[128][129] The electrical fire caused some systems to fail before landing.[130] Following this incident, Boeing suspended flight testing on November 10, 2010; ground testing continued.[131][132] After investigation, the in-flight fire was primarily attributed to foreign object debris (FOD) that was present in the electrical bay.[133] After electrical system and software changes, the 787 resumed flight testing on December 23, 2010.[134][135]

On November 5, 2010, it was reported that some 787 deliveries would be delayed to address problems found during flight testing.[136][137] In January 2011, the first 787 delivery was rescheduled to the third quarter of 2011 due to software and electrical updates following the in-flight fire.[138][139] By February 24, 2011, the 787 had completed 80% of the test conditions for Rolls-Royce Trent 1000 engine and 60% of the conditions for the General Electric GEnx-1B engine.[140] In July 2011, ANA performed a week of operations testing using a 787 in Japan.[141] The test aircraft had flown 4,828 hours in 1,707 flights combined by August 15, 2011.[106] During testing, the 787 visited 14 countries in Asia, Europe, North America, and South America to test in extreme climates and conditions and for route testing.[142]

On August 13, 2011, certification testing of the Rolls-Royce powered 787-8 finished.[143] The FAA and European Aviation Safety Agency certified the 787 on August 26, 2011, at a ceremony in Everett, Washington.[144][145] Certification had taken 18 months, twice as long as originally planned.

Service entry and early operations

Certification cleared the way for deliveries and in 2011, Boeing prepared to increase 787 production rates from two to ten aircraft per month at assembly lines in Everett and Charleston over two years.[145] Legal difficulties clouded production at Charleston; on April 20, 2011, the National Labor Relations Board alleged that a second production line in South Carolina violated two sections of the National Labor Relations Act.[98] In December 2011, the National Labor Relations Board dropped its lawsuit after the Machinists' union withdrew its complaint as part of a new contract with Boeing.[146] The first 787 assembled at South Carolina was rolled out on April 27, 2012.[147]

The first 787 was officially delivered to All Nippon Airways (ANA) on September 25, 2011, at the Boeing factory. A ceremony to mark the occasion was also held the next day.[148][149] On September 27, it flew to Tokyo Haneda Airport.[150][151] The airline took delivery of the second 787 on October 13, 2011.[152]

On October 26, 2011, an ANA 787 flew the first commercial flight from Tokyo Narita Airport to Hong Kong International Airport.[153] The airliner entered service some three years later than originally planned. Tickets for the flight were sold in an online auction; the highest bidder had paid $34,000 for a seat.[154] An ANA 787 flew its first long-haul flight to Europe on January 21, 2012 from Haneda to Frankfurt Airport.[155]

On December 6, 2011, test aircraft ZA006 (sixth 787), powered by General Electric GEnx engines, flew 10,710 nmi (19,830 km) non-stop from Boeing Field eastward to Shahjalal International Airport in Dhaka, Bangladesh, setting a new world distance record for aircraft in the 787's weight class, which is between 440,000 and 550,000 lb (200,000 and 250,000 kg). This flight surpassed the previous record of 9,127 nautical miles (16,903 km), set in 2002 by an Airbus A330. The Dreamliner then continued eastbound from Dhaka to return to Boeing Field, setting a world-circling speed record of 42 hours, 27 minutes.[156] In December 2011, Boeing started a six-month promotion 787 world tour, visiting various cities in China, Africa, the Middle East, Europe, United States, and others.[157] In April 2012, an ANA 787 made a delivery flight from Boeing Field to Haneda Airport partially using biofuel from cooking oil.[158]

ANA surveyed 800 passengers who flew the 787 from Tokyo to Frankfurt: expectations were surpassed for 90% of passengers; features that met or exceeded expectations included air quality and cabin pressure (90% of passengers), cabin ambiance (92% of passengers), higher cabin humidity levels (80% of passengers), headroom (40% of passengers) and the larger windows (90% of passengers). 25% said they would go out of their way to again fly on the 787.[159]

After its first six months of service, Rolls-powered ANA aircraft were burning around 21% less fuel than the replaced 767-300ER on international flights, slightly better than the 20% originally expected, and 15–20% on domestic routes, while GE-powered Japan Airlines aircraft were potentially slightly better.[160] Other 787 operators have reported similar fuel savings, ranging from 20–22% compared with the 767-300ER.[161] An analysis by consultant AirInsight concluded that United Airlines' 787s achieved an operating cost per seat that was 6% lower than the Airbus A330.[162] In November 2017, International Airlines Group chief Willie Walsh said that for its budget carrier Level the lower cost of ownership of its two A330-200 more than offsets the 13,000 lb (6 t) higher fuel burn ($3,500 on a Barcelona-Los Angeles flight). It would introduce three more A330s as there were not enough 787 pilots.[163]

Early operators discovered that if the APS5000 Auxiliary power unit was shut down with the inlet door closed, heat continued to build up in the tail compartment and cause the rotor shaft to bow. It could take up to 2 hours for the shaft to straighten again. This was particularly acute on short haul flights as there was insufficient time to allow the unit to cool before a restart was needed. Procedures were modified and the APU was later redesigned to address the issue.[164]

On September 15, 2012, the NTSB requested the grounding of certain 787s due to GE engine failures; GE believed the production problem had been fixed by that time.[165] In March 2014, Mitsubishi Heavy Industries informed Boeing of a new problem that was caused by a change in manufacturing processes. Employees did not fill gaps with shims to connect wing rib aluminum shear ties to the carbon composite wing panels; the tightened fasteners, without shims, cause excessive stress that creates hairline cracks in the wings, which could enlarge and cause further damage. Forty-two aircraft awaiting delivery were affected, and each one required 1–2 weeks to inspect and repair. However, Boeing did not expect this problem to affect the overall delivery schedule, even if some airplanes were delivered late.[166]

Dispatch reliability is an industry standard measure of the rate of departure from the gate with no more than 15 minutes delay due to technical issues.[167] The 787-8 started out with a ~96% operational reliability, increasing to ~98.5% in April 2015. Daily utilization increased from five hours in 2013 to twelve hours in 2014.[168] Dispatch reliability grew to 99.3% in 2017.[169]

Airlines have often assigned the 787 to routes previously flown by larger aircraft that could not return a profit. For example, Air Canada offered a Toronto to New Delhi route, first utilizing a Lockheed L1011, then a Boeing 747, then an Airbus A340, but none of these types were efficient enough to generate profit. The airline operated the route profitably with a 787-9, and credits the right number of seats and greater fuel efficiency for this success.[170]

Up to June 30, 2017, after 565 units were delivered since 2011: 60% -8 (340) and 40% -9 (225), the airports with most 787 departures are Haneda airport with 304 weekly, Narita with 276 and Doha Airport with 265. By the end of 2017, there were 39 airlines operating the 787 on 983 routes with an average length of 5,282 km (2,852 nmi), including 163 new routes (17%).[171] As of 24 March 2018, the 787's longest route is Qantas' Perth-London Heathrow, a distance of 14,499 km (7,829 nmi) and the second-longest regular scheduled flight behind Qatar Airways' 14,529 km (7,845 nmi) route from Doha to Auckland, flown with a Boeing 777-200LR.[172]

Market, costs, and production issues

The 787 Dreamliner program has reportedly cost Boeing $32 billion.[2][173] In 2013, the 787 program was expected to be profitable after 1,100 aircraft have been sold.[174]

The cost of producing a 787 exceeded the purchase price at the end of 2013. Boeing's accounting method books sales immediately and distributes estimated production costs over ten years for the 1,300 aircraft it expects to deliver during that time. JPMorgan Chase analyst Joseph Nadol estimated the program's cash loss to be $45 million per airplane, decreasing as the program moves forward. The actual cash flow reflects Boeing collecting most of the purchase price upon delivery; Boeing expects deferred costs to total $25 billion before the company begins to break even on production; the comparable number for the Boeing 777, adjusted for inflation, is $3.7 billion. Boeing plans to improve financial return by reorganizing the production line, renegotiating contracts with suppliers and labor unions, and increasing the 787 production rate, stepwise, to 12 airplanes per month by the end of 2016 and 14 airplanes per month by the end of the decade.[162]

As of April 2015, the production rate is 10 per month;[175] Boeing lost $30 million per 787 delivered in the first quarter of 2015, although Boeing plans to break even by the end of the year.[176] The accumulated losses for the 787 totalled almost $27 billion by May 2015. The cost of producing the fuselage may increase because of a tentative deal reached with Spirit Aerosystems of Wichita, Kansas, wherein severe price cuts demanded by Boeing would be eased, in return for a comprehensive agreement that lowers the cost of fuselages for other jetliners that Spirit helps Boeing manufacture.[177]

In the second quarter of 2015, Boeing lost $25 million on each 787 delivered but was planning to break-even per plane before the year end. After that Boeing hopes to build 900 Dreamliners over six years at an average profit of more than $35 million each. But with deferred costs peaking in 2016 at $33 billion, Leeham analyst Bjorn Fehrm believes Boeing can't make an overall profit on the program. Ted Piepenbrock, an academic affiliated with the MIT and the University of Oxford, projects losses decreasing through the first 700 airliners, forecast the cumulative deferred costs to peak beyond $34 billion and its model most favorable to Boeing projects a program loss of $5 billion after delivering 2,000 Dreamliners. Boeing's original development investment, estimated at least at a further $20 billion, isn't included in these costs.[178]

To recoup the deferred costs and earn its goal of "low single digit" overall profit margin, Boeing has to make an average profit of more than $50 million on the final 205 airplanes of the accounting block to be delivered from 2020: a profit margin of more than 30% while the mature Boeing 737 and 777 programs have 20% to 25% margins. Boeing is reaching it through a larger proportion of the 20% to 40% higher price -9/10s, costing only 5% to 10% more than the -8 with lower production costs from reliability and producibility investments and the expected experience curve. Former Douglas Aircraft chief economist Adam Pilarski notes that two assembly sites slows the experience curve. Boeing assumed a faster improvement than on previous programs which has not happened. Airbus competition with the A350 and the launch of the A330neo put strong pressure on the 787 pricing.[178]

On July 21, 2016 Boeing reported charges of $847 million against two flight-test 787s built in 2009. Boeing had planned to refurbish and sell them, but instead wrote them off as research and development expense.[179] Boeing will build 14 787s per month (168 per year) from 2019, helping to offset the $28 billion in deferred production costs accumulated through 2015, and will add 100 aircraft to the current accounting block of 1,300 at the end of the 2017 third quarter.[180]

Boeing's Jim Albaugh said that the requested return on net assets (RONA) led to outsourcing systems reducing investment, but improving RONA had to be balanced against the risk of loss of control.[181]

The valuation for a new 787-9 is $145 million in 2018, up from $135 million in 2014, but it may have been sold for $110–15 million to prevent A330neo sales while an A330-900 is worth $115 million.[182] In February 2018, Boeing priced six 787-9s for less than $100–115m each to Hawaiian Airlines, close to their production cost of $80–90m, to overcome its A330-800 order.[183]

By late 2018, deferred production costs were reduced from a peak of $27.6 billion in early 2016 to $23.5 billion as assembly efficiency improved and the 800th production started.[184] On April 20, 2019, The New York Times uncovered production quality issues in the 787 Dreamliner assembly line at the Boeing South Carolina assembly site.[185]

From late 2020, production rate will be reduced from 14 to 12 airplanes per month due to the China–United States trade war.[186]



The Boeing 787 Dreamliner is a long-haul, widebody, twin-engine jetliner, which features light-weight construction. The aircraft is 80% composite by volume;[187] Boeing lists its materials by weight as 50% composite, 20% aluminum, 15% titanium, 10% steel, and 5% other.[188][189] Aluminum has been used throughout the wing and tail leading edges, titanium is predominantly present within the elements of the engines and fasteners, while various individual components are composed of steel.[189]

External features include a smooth nose contour, raked wingtips and engine nacelles with noise-reducing serrated edges (chevrons).[190] The longest-range 787 variant can fly 8,000 to 8,500 nautical miles (9,200 to 9,800 mi; 14,800 to 15,700 km), enough to cover the Los Angeles to Bangkok and New York City to Hong Kong routes. Its cruising airspeed is Mach 0.85,[191] equivalent to 561 mph (903 km/h; 487 kn) at typical cruise altitudes. The aircraft has a design life of 44,000 flight cycles.[192]

Flight systems

Among 787 flight systems, a key change from traditional airliners is the electrical architecture. The architecture is bleedless and replaces bleed air with electrically powered compressors and four of six hydraulic power sources with electrically driven pumps, while completely eliminating pneumatics and hydraulics from some subsystems, e.g. engine starters and brakes.[193] Boeing says that this system extracts 35% less power from the engines, allowing increased thrust and improved fuel efficiency.[194] The total available on-board electrical power is 1.45 megawatts, which is five times the power available on conventional pneumatic airliners;[195] the most notable electrically powered systems include engine start, cabin pressurization, horizontal-stabilizer trim, and wheel brakes.[196] Wing ice protection is another new system; it uses electro-thermal heater mats on the wing slats instead of traditional hot bleed air.[197][198] An active gust alleviation system, similar to the system used on the B-2 bomber, improves ride quality during turbulence.[199][200]

The 787 has a "fly-by-wire" control system similar in architecture to that of the Boeing 777.[201] The flight deck features multi-function LCDs, which use an industry-standard graphical user interface widget toolkit (Cockpit Display System Interfaces to User Systems / ARINC 661).[202] The 787 flight deck includes two head-up displays (HUDs) as a standard feature.[203] Like other Boeing airliners, the 787 uses a yoke instead of a side-stick. Under consideration is future integration of forward-looking infrared into the HUD for thermal sensing, allowing pilots to "see" through clouds.[6] Lockheed Martin's Orion spacecraft will use a glass cockpit derived from Honeywell International's 787 flight deck systems.[204]

Honeywell and Rockwell Collins provide flight control, guidance, and other avionics systems, including standard dual head-up guidance systems,[6] Thales supplies the integrated standby flight display and power management,[6] while Meggitt/Securaplane provides the auxiliary power unit (APU) starting system, electrical power-conversion system, and battery-control system[205][206] with lithium cobalt oxide (LiCoO2) batteries by GS Yuasa.[207][208] One of the two batteries weighs 28.5 kg and is rated 29.6 V, 76 Ah, giving 2.2 kWh.[209] Battery charging is controlled by four independent systems to prevent overcharging, following early lab testing.[210] The battery systems were the focus of a regulatory investigation due to multiple lithium battery fires, which led to grounding of the 787 fleet starting in January 2013.[211]

A version of Ethernet (Avionics Full-Duplex Switched Ethernet (AFDX) / ARINC 664) transmits data between the flight deck and aircraft systems.[212] The control, navigation, and communication systems are networked with the passenger cabin's in-flight internet systems.[213] In January 2008, FAA concerns were reported regarding possible passenger access to the 787's computer networks; Boeing has stated that various protective hardware and software solutions are employed, including air gaps to physically separate the networks, and firewalls for software separation.[213][214] These measures prevent data transfer from the passenger internet system to the maintenance or navigation systems.[213]

The -9/10 hybrid laminar flow control (HLFC) system delays the critical transition from laminar to turbulent flow as far back as possible on the vertical tail by passive suction from leading-edge holes to mid-fin low-pressure doors, but was dropped from the tailplane due to lower benefits than the extra complexity and cost.[215]

Composite materials

The 787 is the first major commercial airplane to have a composite fuselage, composite wings, and use composites in most other airframe components.[216] Each 787 contains approximately 77,000 pounds (35 metric tons) of carbon fiber reinforced polymer (CFRP), made with 51,000 lb (23 t) of carbon fiber.[217] Carbon fiber composites have a higher strength-to-weight ratio than conventional aircraft materials, and help make the 787 a lighter aircraft.[189] Composites are used on fuselage, wings, tail, doors, and interior. Boeing had built and tested the first commercial aircraft composite section while studying the proposed Sonic Cruiser in the early 2000s.[218][219] The first carbon/epoxy primary structure was put into service on the Boeing 737 Classic horizontal tail in 1984, and the largest use of composite structures is 60 percent in the Boeing–Sikorsky RAH-66 Comanche.[220]

Carbon fiber, unlike metal, does not visibly show cracks and fatigue, prompting concerns about the safety risks of widespread use of the material;[81][221][222] the rival Airbus A350 XWB uses composite panels on a frame, a more conventional approach, which its contractors regarded as less risky.[82] Although fired in 2006, Boeing engineer Vince Weldon complained to management, and later to the public: the composite fuselage was unsafe compared to conventional aluminum designs, and in a crash, was more likely to "shatter too easily and burn with toxic fumes".[223]

In addition, a potential issue is the porous nature of composite materials: collected moisture expanding with altitude can cause delamination.[224] Boeing responded that composites have been used on wings and other passenger aircraft parts for many years without incident, and special defect detection procedures will be instituted for the 787 to detect any potential hidden damage.[225]

In 2006, Boeing launched the 787 GoldCare program.[226] This is an optional, comprehensive life-cycle management service, whereby aircraft in the program are routinely monitored and repaired, as needed. Although the first program of its kind from Boeing, post-sale protection programs are not new; such programs are usually offered by third party service centers. Boeing is also designing and testing composite hardware so inspections are mainly visual. This reduces the need for ultrasonic and other non-visual inspection methods, saving time and money.[227]


The 787 is powered by two engines; these engines use all-electrical bleedless systems, eliminating the superheated air conduits normally used for aircraft power, de-icing, and other functions.[6] As part of its "Quiet Technology Demonstrator 2" project, Boeing adopted several engine noise-reducing technologies for the 787. These include an air inlet containing sound-absorbing materials and exhaust duct cover with a chevron-toothed pattern on the rim for a quieter mixing of exhaust and outside air.[190] Boeing expects these developments to make the 787 significantly quieter both inside and out.[228] The noise-reducing measures prevent sounds above 85 decibels from leaving airport boundaries.[189]

The two different engine models compatible with the 787 use a standard electrical interface to allow an aircraft to be fitted with either Rolls-Royce Trent 1000 or General Electric GEnx engines. This interchangeability aims to save time and cost when changing engine types;[6] while previous aircraft could exchange engines for those of a different manufacturer, the high cost and time required made it rare.[229][230] In 2006, Boeing addressed reports of an extended change period by stating that the 787 engine swap was intended to take 24 hours.[230]

In 2016, Rolls Royce began flight testing its new Trent 1000 TEN engine. It has a new compressor system based on the compressor in Rolls-Royce Trent XWB engine and a new turbine design for extra thrust, up to 78,000 lbf (350 kN). Rolls Royce plans to offer the TEN on the 787-8, -9 and -10.[231]

In early 2018, of 1277 orders, 681 selected GE (53.3%), 420 Rolls-Royce (32.9%) and 176 were undecided (13.8%).[232]


The 787-8 is designed to typically seat 234 passengers in a three-class setup, 240 in two-class domestic configuration, and 296 passengers in a high-density economy arrangement. Seat rows can be arranged in four to seven abreast in first or business, e.g. 1–⁠2–⁠1, 2–⁠2–⁠2, or 2–⁠3–⁠2. Eight or nine abreast are options in economy, e.g. 3–⁠2–⁠3, 2–⁠4–⁠2, or 3–⁠3–⁠3. Typical seat room ranges from 46 to 61 in (120 to 150 cm) pitch in first, 36 to 39 in (91 to 99 cm) in business, and 32 to 34 in (81 to 86 cm) in economy.[233][234]

Cabin interior width is approximately 18 feet (550 cm) at armrest level.[233][235] The Dreamliner's cabin width is 15 inches (38 cm) more than that of the Airbus A330 and A340,[236] 5 inches (13 cm) less than the A350,[237] and 16 in (41 cm) less than the 777.[238] The 787's economy seats can be up to 17.5 in (44.4 cm) wide for nine-abreast seating[239] and up to 19 inches (48 cm) wide for eight-abreast seating arrangements. Most airlines are selecting the nine-abreast (3–3–3) configuration.[240][241] The 787's nine-abreast seating for economy provides passengers less space, particularly across the hips and shoulders, than any other jet airliner.[242] Some observers recommended passengers avoid flying 787s with nine-abreast seating,[242][243] although others suggested that the 787 is more comfortable than other airliners.[244]

The 787's cabin windows are larger than any other civil air transport in-service or in development,[245] with dimensions of 10.7 by 18.4 in (27 by 47 cm),[245] and a higher eye level so passengers can maintain a view of the horizon.[246] The composite fuselage permits larger windows without the need for structural reinforcement.[247] Instead of plastic window shades, the windows use electrochromism-based smart glass (supplied by PPG Industries)[248] allowing flight attendants[249] and passengers to adjust five levels of sunlight and visibility to their liking,[250] reducing cabin glare while maintaining a view to the outside world,[246][251] but the most opaque setting still has some transparency.[249][252] The lavatory, however, has a traditional sunshade.[250]

The 787's cabin features light-emitting diodes (LEDs)[253] as standard equipment, allowing the aircraft to be entirely "bulbless". LED lights have previously been an option on the Boeing 777 and Airbus aircraft.[254][255] The system has three-color LEDs plus a white LED.[253] The 787 interior was designed to better accommodate persons with mobility, sensory, and cognitive disabilities. For example, a 56 by 57 in (140 by 140 cm) convertible lavatory includes a movable center wall that allows two separate lavatories to become one large, wheelchair-accessible facility.[256]

The 787's internal cabin pressure is the equivalent of 6,000 feet (1,800 m) altitude resulting in a higher pressure than for the 8,000 feet (2,400 m) altitude of older conventional aircraft.[257] According to Boeing, in a joint study with Oklahoma State University, this will significantly improve passenger comfort.[199][258] Cabin air pressurization is provided by electrically driven compressors, rather than traditional engine-bleed air, thereby eliminating the need to cool heated air before it enters the cabin.[259][260] The cabin's humidity is programmable based on the number of passengers carried and allows 15% humidity settings instead of the 4% found in previous aircraft.[257] The composite fuselage avoids metal fatigue issues associated with higher cabin pressure and eliminates the risk of corrosion from higher humidity levels.[257] The cabin air-conditioning system improves air quality by removing ozone from outside air and, besides standard HEPA filters, which remove airborne particles, uses a gaseous filtration system to remove odors, irritants, and gaseous contaminants, as well as particulates like viruses, bacteria and allergens.[189][251]


The shortest Dreamliner variant, the 787-8 was the first variant to fly in December 2009, then the longer 787-9 in September 2013, followed by the longest variant, the 787-10, in March 2017. They are called B788, B789, and B78X in the List of ICAO aircraft type designators.[261] The short-range 787-3 was cancelled in 2010.


With a typical capacity of 242 passengers and a range of 7,355 nautical miles (13,621 km; 8,464 mi), the -8 is the base model of the 787 family and was the first to enter service in 2011.[262] The 787-8 is targeted to replace the Boeing 767-200ER and -300ER, as well as expand into new non-stop markets where larger planes would not be economically viable. As of October 2019, approximately 29% of 787 orders are for the 787-8 with 366 delivered.[1] In 2018, Boeing said it would change the -8 manufacturing to raise its commonality with the -9 above the current 30% to be more like the 95% commonality between the -9 and -10, as it will benefit from learning from those.[263] When it was launched, a new B787-8 was to cost only slightly more than the B767-300ER, valued new for $85 million at its 1990s peak, but it ended being 20% more costly.[264]


Keeping the same wingspan as the 787-8, the 787-9 is a lengthened and strengthened variant with a 20 feet (6.1 m) longer fuselage and a 54,500 pounds (24,700 kg) higher maximum take-off weight (MTOW), seating 280 passengers in a typical three-class arrangement over a 7,635 nautical miles (8,786 mi; 14,140 km) range.[262] It features active boundary-layer control on the tail surfaces, reducing drag.[265]

In 2005, the entry into service (EIS) was planned for 2010. The firm configuration was finalized on July 1, 2010.[266] By October 2011, deliveries were scheduled to begin in 2014.[267]

The prototype 787-9 made its maiden flight from Paine Field on September 17, 2013.[268] By November 8, 2013, it had flown 141 hours.[269] A 787-9 was on static display at the 2014 Farnborough Air Show prior to first delivery.[270] On July 8, 2014, Launch customer Air New Zealand took its first 787-9, in a distinctive black livery in a ceremony at Paine Field.[271] Its first commercial flight was from Auckland to Sydney on August 9, 2014.[272]

The 787-9 was to begin commercial service with All Nippon Airways on August 7, 2014.[273] United Airlines was to start the longest nonstop scheduled 787 service between Los Angeles and Melbourne in October 2014.[274] Air China started a 787-9 route between Beijing and Chengdu in May 2016.[275] As of October 2019, 57% of all 787 orders are for the 787-9, with 498 deliveries.[1] A 2014 787-9 leased for $1.05 million per month, and fell to $925,000 per month in 2018.[276]

The 20-ft stretch was achieved by adding a 10-ft (five-frame) extension forward and aft. The 787-8 and 787-9 have 50% commonality: the wing, fuselage and systems of the 787-8 had required radical revision to achieve the payload-range goals of the 787-9. Following a major revamp of the original 787-8 wing, the latest configuration for the 787-9 and -10 is the fourth design evolution.[277]

On March 25, 2018, a Qantas 787-9 completed the first scheduled non-stop flight between Australia and the UK flying seventeen hours from Perth to London Heathrow.[278] On October 20, 2019, a Qantas 787-9 was flight tested from New York to Sydney with a restricted payload. A team of researchers monitored passengers and crew to investigate wellness and performance on long flights.[279]


In December 2005, pushed by the interest of Emirates and Qantas, Boeing was studying the possibility of stretching the 787-9 further to seat 290 to 310 passengers. This variant would be similar to the capacity of the Airbus A350-900 and Boeing 777-200ER.[280] Customer discussions were continuing in early 2006.[281] Mike Bair, Boeing's vice president and general manager for the 787 development program at the time, said it was easier to proceed with the 787-10 development after other customers followed Emirates' request.[282]

On May 30, 2013, Singapore Airlines (SIA) became the launch customer by stating it would order 30 787-10s (provided Boeing launched the program), to be delivered in 2018–2019.[283][284] On June 18, 2013, Boeing officially launched the 787-10 at the Paris Air Show, with orders or commitments for 102 aircraft from Air Lease Corporation (30), Singapore Airlines (30), United Airlines (20), British Airways (12), and GE Capital Aviation Services (10).[285] As of February 2019 the aircraft has 173 orders out of which 18 have been delivered.[286]

The variant was envisioned as replacing Boeing 777-200, Airbus A330 and Airbus A340 aircraft.[287] The -10 is to compete against the Airbus A350-900, and offer better economics than the A350 on shorter routes, according to Boeing.[288] Steven Udvar-Hazy said "If it's identically configured, the -10 has a little bit of an edge on the -900", but smaller than Boeing's estimate of 10 percent.[289] The 787-10 is to be 224 ft (68 m) long, seat 330 passengers in a two-class cabin configuration, and have a range of 6,430 nmi (11,910 km; 7,400 mi).[290]

Boeing completed detailed design for the -10 on December 2, 2015.[291] Major assembly began in March 2016.[292] Designers targeted 90% commonality between the 787-9 and -10 and achieved 95%; the 18-ft stretch was reached by adding 10 ft forward of the wing and 8 ft aft, and by strengthening the fuselage for bending loads in the center wingbox. Because of the length and additional tail strike protection needed, a semilevered landing gear enables rotation over the aft wheels rather than at the bogie center, like the 777-300ER, and the cabin air conditioning system has 15% more capacity. The first and third -10s have Rolls-Royce's new Trent 1000 TEN engines, while the second is powered by the competing General Electric GEnx-1B engine.[277]

Major fuselage parts were received for final assembly on November 30, 2016. The 787-10's mid-fuselage sections are too large for transport to Everett, Washington and it is built only in Charleston, South Carolina;[293] it is the first Boeing airliner assembled exclusively there.[294] The first -10 was rolled out on February 17, 2017.[295] The variant's first flight took place on March 31, 2017 and lasted 4 hours and 48 minutes.[296]

The first test 787-10 aircraft is engaged in flight envelope expansion work and the second joined the program in early May 2017, while the third with a passenger cabin interior to test the uprated environmental control system and Trent fuel-burn performance was scheduled to join in June. The -10 was scheduled to appear at the 2017 Paris Air Show.[294] The second -10 is being used to prove the GE Aviation engines and the third made its first flight on June 8, 2017, when the flight-test programme was 30% complete.[297] Boeing finished final assembly and painting of the first production 787-10 in October 2017, before its certification.[298] The flight tests are mainly ahead of schedule, with the last stages focused on fuel burn validation and revised flight control software, the phase should be completed in December 2017 and could advance first deliveries earlier than expected in 2018.[299]

At the start of the November 2017 Dubai Air Show the 787-10 had 171 orders; Emirates committed to 40 787-10s, in two- and three-class cabins for 240 to 330 passengers, to be delivered from 2022 and with conversion rights to the smaller 787-9.[300][301] These aircraft are adapted for 7–8.5 hour missions, in a 280-seat three–class layout.[302] Emirates' Tim Clark was doubtful it would meet its MTOW for the payload-range required with initial 70,000–72,000 lbf (310–320 kN) thrust engines, but with the current 76,000 lbf (340 kN) turbofans and the -9 early margins gave the -10 "stellar economics".[303] By early 2019, Emirates was considering canceling its 787-10 order, due to engine margins being insufficient for the hot Dubai weather, in favor of the A350 (which would also replace its last A380 order).[304] The order was no longer mentioned in Emirates' May 2019 annual report, whereas it was listed as "authorised and not contracted" in the previous report.[305] At the 2019 Dubai Air Show, Emirates placed an order for 30 787-9 aircraft rather than the 787-10.[306]

In January 2018, the -10 was certified by the FAA after testing for 900 flight hours.[307] Boeing received its production certificate on February 15.[308] It was first delivered to launch customer Singapore Airlines on March 25, 2018.[309] Fitted with 337 seats, 36 in business and 301 in economy,[310] the -10 began commercial service on April 3, 2018.[311]

The 8.7% fuselage stretch from the -9 to the -10 likely increased empty weight at a lower rate than the 7.4% growth from the -8 to the -9 due to the 10.7% stretch.[215] Software increases the tailplane effectiveness to avoid modifying it. With the same wing but a longer fuselage than the -9, the flutter margin was reduced for the -10 but to avoid stiffening the wing or adding wingtip counterweights for commonality, software oscillates the elevators in the flaps up vertical mode suppression system (F0VMS), similar to the vertical gust load alleviation system.[215]

To replace Air New Zealand’s 777-200 fleet, Boeing wants to increase the 787-10 MTOW by over 13,000 lb (6 t) to 572,000 lb (260 t) with some reinforcements and updated fuel systems. This would allow more range, like the 5,600 nmi (10,400 km) trip from Auckland to Los Angeles with no passenger restrictions and some cargo. The increased performance could trickle down to the 787-9, allowing Auckland to New York flights.[312]

BBJ 787

The 787-8 and -9 are offered as Boeing Business Jets, the first offering 2,415 sq ft (224.4 m²) of floor space and a range of 9,945 nmi (18,418 km), the other 2,775 sq ft (257,8 m²) and 9,485 nmi (17,566 km), both with 25 passengers. Through June 2018, fifteen have been ordered, twelve delivered and four were in service.[313]

Other proposals

Although with no set date, Boeing expects to build, possibly in the 2018–2023 timeframe, a 787 freighter version.[314][315] Boeing also reportedly considered a 787 variant as a candidate to replace the 747-based Boeing VC-25 presidential transport in 2009.[316] In 2018, two Boeing 747-8 aircraft were ordered to replace the two older 747-200-based VC-25A Air Force One aircraft.[317]


The 787-3 would have carried 290–330 passengers in two-class over 2,500–3,050 nmi (4,630–5,650 km) range, limited by a 364,000 lb (165 t) MTOW.[318] In April 2008, to keep the -8 on track for delivery, the -9 stretch was postponed from 2010 to at least 2012 and prioritised before the 787-3 and its 43 orders to follow without a firm delivery date.[70]

It kept the -8 length but its 51.7 m wingspan would have fit in ICAO Aerodrome Reference Code D.[319] It was designed to operate on Boeing 757-300/Boeing 767-200 sized regional routes from airports with restricted gate spacing.[320] The wingspan was decreased by using blended winglets instead of raked wingtips.

By January 2010, all orders, from Japan Airlines and All Nippon Airways, had been converted to the 787-8.[321] As it was designed specifically for the Japanese market, Boeing would likely scrap it after they switched orders.[322] The -8's longer wingspan makes it more efficient on stages longer than 370 km (200 nm).[323] In December 2010, Boeing withdrew the short-haul model as it struggled to produce the 787-8 after program delays of three years.[324]


There are 808 Boeing 787 aircraft in airline service as of August 2019, comprising 328 787-8s, 451 787-9s and 29 787-10s, with outstanding orders for a further 483 aircraft.[325] The operators are All Nippon Airways (61), Japan Airlines (42), American Airlines (42), United Airlines (34), Air Canada (37), Norwegian (36), Hainan Airlines (34), Qatar Airways (30), and others with fewer aircraft.[325]

Orders and deliveries

In September 2011, the 787 was first officially delivered to launch customer All Nippon Airways.[326] As of December 2018, the top three identified 787 customers are All Nippon Airways with 83 orders (36 -8s, 44 -9s and three -10s), ILFC (an aircraft leasing company) with 74 orders (23 -8s and 51 -9s), and American Airlines with 67 orders (20 -8s and 47 -9s).[1]

On December 13, 2018, the 787th Boeing 787 was delivered to AerCap, the largest 787 lessor. By then the 787 had flown 300 million passengers on 1.5 million flights and opened 210 new nonstop routes.[327]

Boeing 787 orders and deliveries by type
Total ordersTotal deliveries
Boeing 787 net orders and deliveries by year
Net Orders5623515736993-59-413-1218241715894109841,487
Deliveries 787-834665104713526108368

Boeing 787 orders and deliveries (cumulative, by year):



Orders and deliveries through November 2019[1][328]

Accidents and notable incidents

The Boeing 787 has been involved in one aviation incident. In December 2012, Boeing CEO James McNerney stated that the 787's issues were no greater than those experienced with the introduction of other models such as the Boeing 777.[329][330]

On August 10, 2019, Norwegian Air Flight DY7115 from Rome Fiumicino to Los Angeles suffered an uncontained engine failure of one of its Rolls-Royce Trent 1000 engines shortly after takeoff, and engine fragments fell on parts of Fiumicino, damaging houses and cars while one person was injured.[331]

Operational problems

A Japan Airlines (JAL) 787 experienced a fuel leak on January 8, 2013, and its flight from Boston was canceled.[332] On January 9, United Airlines reported a problem in one of its six 787s with the wiring near the main batteries. After these incidents, the U.S. National Transportation Safety Board subsequently opened a safety probe.[333] Later, on January 11, 2013, another aircraft was found to have a fuel leak.[334]

Also on January 11, 2013, the FAA completed a comprehensive review of the 787's critical systems including the design, manufacture, and assembly. The Department of Transportation secretary Ray LaHood stated the administration was "looking for the root causes" behind the recent issues. The head of the FAA, Michael Huerta, said that so far nothing found "suggests [the 787] is not safe."[335]

On January 13, 2013, a JAL 787 at Narita International Airport outside Tokyo was found to also have a fuel leak during an inspection, the third time a fuel leak had been reported within a week. The aircraft reportedly was the same one that had a fuel leak in Boston on January 8.[336] This leak was caused by a different valve; the causes of the leaks are unknown.[337] Japan's transport ministry has also launched an investigation.[338]

On July 12, 2013, a fire started on an empty Ethiopian Airlines 787 parked at Heathrow Airport before it was extinguished by the airport fire and rescue service. No injuries were reported.[339][340] The fire caused extensive heat damage to the aircraft.[341] The FAA and NTSB sent representatives to assist in the investigation.[342] The initial investigation found no direct link with the aircraft's main batteries.[343] Further investigations indicated that the fire was due to lithium-manganese dioxide batteries powering an emergency locator transmitter (ELT).[344][345] The UK Air Accidents Investigation Branch (AAIB) issued a special bulletin on July 18, 2013, requesting the US FAA ensure that the locator is removed or disconnected in Boeing 787s and to review the safety of lithium battery-powered ELT systems in other aircraft types.[346] On August 19, 2015, the Associated Press reported that the fire was started by a short circuit caused by crossed wires located under the battery. The Air Accidents Investigation Branch's investigators recommended that "the U.S. Federal Aviation Administration, together with similar bodies in Europe and Canada, should conduct a review of equipment powered by lithium metal batteries to ensure they have 'an acceptable level of circuit protection.'"[347]

On July 26, 2013, ANA said it had found wiring damage on two 787 locator beacons. United Airlines also reported that it had found a pinched wire in one 787 locator beacon.[348] On August 14, 2013, the media reported a fire extinguisher fault affecting three ANA airplanes, which caused the fire extinguishers to discharge into the opposite engine from the one requested.[349] The fault was caused by a supplier assembly error.[350]

On September 28, 2013, Norwegian Long Haul decided to take one of its two 787s in its fleet at the time out of service after the two aircraft broke down on more than six occasions in September.[351] The company planned to lease an Airbus A340 for its long-haul operations while the 787 is returned to Boeing for repair.[352]

On November 22, 2013, Boeing issued an advisory to airlines using General Electric GEnx engines on 787 and 747-8 aircraft to avoid flying near high-level thunderstorms due to an increased risk of icing on the engines. The problem was caused by a buildup of ice crystals just behind the main fan causing a brief loss of thrust on six occasions.[353]

On January 21, 2014, a Norwegian Air Shuttle 787 experienced a fuel leak which caused a 19-hour delay to a flight from Bangkok to Oslo.[354] Footage of the leak taken by passengers shows fuel gushing out of the left wing of the aircraft.[355] The leak became known to pilots only after it was pointed out by concerned passengers.[356] It was found later that a faulty valve was responsible.[357] This fuel leak is one of numerous problems experienced by Norwegian Air Shuttle's 787 fleet.[354] Mike Fleming, Boeing's vice president for 787 support and services, subsequently met with executives of Norwegian Air Shuttle and expressed Boeing's commitment to improving the 787's dispatch reliability, "we're not satisfied with where the airplane is today, flying at a fleet average of 98 percent...The 777 today flies at 99.4 percent...and that's the benchmark that the 787 needs to attain.”[358][359]

In March 2016 the FAA accelerated the release of an airworthiness directive in response to reports indicating that in certain weather conditions "erroneous low airspeed may be displayed..." There was concern "abrupt pilot control inputs in this condition could exceed the structural capability of the airplane." Pilots were told not to apply "large, abrupt control column inputs" in the event of an "unrealistic" drop in displayed airspeed.[360][361]

On April 22, 2016, the FAA issued an airworthiness directive following a January 29 incident in which a General Electric GEnx-1B PIP2 engine suffered damage and non-restartable power loss while flying at an altitude of 20,000 feet. The damage is thought to have been caused by a fan imbalance resulting from fan ice shedding.[362][363]

Lithium-ion battery problems

On January 16, 2013, All Nippon Airways Flight NH-692, en route from Yamaguchi Ube Airport to Tokyo Haneda, had a battery problem warning followed by a burning smell while climbing from Ube about 35 nautical miles (65 km) west of Takamatsu, Japan. The aircraft diverted to Takamatsu and was evacuated via the slides; three passengers received minor injuries during the evacuation. Inspection revealed a battery fire. A similar incident in a parked Japan Airlines 787 at Boston's Logan International Airport within the same week led the Federal Aviation Administration to ground all 787s.[364] On January 16, 2013, both major Japanese airlines ANA and JAL voluntarily grounded their fleets of 787s after multiple incidents involving different 787s, including emergency landings. At the time, these two carriers operated 24 of the 50 787s delivered.[365][366] The grounding reportedly cost ANA some 9 billion yen (US$93 million) in lost sales.[367]

On January 16, 2013, the FAA issued an emergency airworthiness directive ordering all American-based airlines to ground their Boeing 787s until yet-to-be-determined modifications were made to the electrical system to reduce the risk of the battery overheating or catching fire.[368] This was the first time that the FAA had grounded an airliner type since 1979.[369] Industry experts disagreed on consequences of the grounding: Airbus was confident that Boeing would resolve the issue[370] and that no airlines will switch plane type,[371][372] while other experts saw the problem as "costly"[373] and "could take upwards of a year".[374]

The FAA also conducted an extensive review of the 787's critical systems. The focus of the review was on the safety of the lithium-ion batteries[369] made of lithium cobalt oxide (LiCoO2). The 787 battery contract was signed in 2005,[208] when this was the only type of lithium aerospace battery available, but since then newer and safer[375] types (such as LiFePO4), which provide less reaction energy with virtually no cobalt content to avoid cobalt's thermal runaway characteristic, have become available.[376][377] FAA approved a 787 battery in 2007 with nine "special conditions".[378][379] A battery approved by FAA (through Mobile Power Solutions) was made by Rose Electronics using Kokam cells;[380] the batteries installed in the 787 are made by Yuasa.[205]

On January 20, the NTSB declared that overvoltage was not the cause of the Boston incident, as voltage did not exceed the battery limit of 32 V,[381] and the charging unit passed tests. The battery had signs of short circuiting and thermal runaway.[382] Despite this, by January 24, the NTSB had not yet pinpointed the cause of the Boston fire; the FAA would not allow U.S.-based 787s to fly again until the problem was found and corrected. In a press briefing that day, NTSB Chairwoman Deborah Hersman said that the NTSB had found evidence of failure of multiple safety systems designed to prevent these battery problems, and stated that fire must never happen on an airplane.[383]

The Japan Transport Safety Board (JTSB) has said on January 23 that the battery in ANA jets in Japan reached a maximum voltage of 31 V (below the 32 V limit like the Boston JAL 787), but had a sudden unexplained voltage drop[384] to near zero.[385] All cells had signs of thermal damage prior to runaway.[386] ANA and JAL had replaced several 787 batteries before the mishaps.[385] As of January 29, 2013, JTSB approved the Yuasa factory quality control[387][388] while the NTSB examined the Boston battery for defects.[389] The failure rate, with two major battery thermal runaway events in 100,000 flight hours, was much higher than the rate of one in 10 million flight hours predicted by Boeing.[364]

The only American airline that operated the Dreamliner at the time was United Airlines, which had six.[390] Chile's Directorate General of Civil Aviation (DGAC) grounded LAN Airlines' three 787s.[391] The Indian Directorate General of Civil Aviation (DGCA) directed Air India to ground its six Dreamliners. The Japanese Transport Ministry made the ANA and JAL groundings official and indefinite following the FAA announcement.[392] The European Aviation Safety Agency also followed the FAA's advice and grounded the only two European 787s operated by LOT Polish Airlines.[393] Qatar Airways grounded their five Dreamliners.[394] Ethiopian Airlines was the final operator to temporarily ground its four Dreamliners.[395] By January 17, 2013, all 50 of the aircraft delivered to date had been grounded.[395][396] On January 18, Boeing halted 787 deliveries until the battery problem was resolved.[397]

On February 7, 2013, the FAA gave approval for Boeing to conduct 787 test flights to gather additional data.[398][399] In February 2013, FAA oversight of the 787's 2007 safety approval and certification was under scrutiny.[400] On March 7, 2013, the NTSB released an interim factual report about the Boston battery fire on January 7, 2013. The investigation[401] stated that "heavy smoke and fire coming from the front of the APU battery case." Firefighters "tried fire extinguishing, but smoke and flame (flame size about 3 inches) did not stop".[402][403]

Boeing completed its final tests on a revised battery design on April 5, 2013.[404] The FAA approved Boeing's revised battery design with three additional, overlapping protection methods on April 19, 2013.[405] The FAA published a directive on April 25 to provide instructions for retrofitting battery hardware before the 787s could return to flight.[406][407] The repairs were expected to be completed in weeks.[405] Following the FAA approval in the U.S. effective April 26,[408] Japan approved resumption of Boeing 787 flights in the country on April 26, 2013.[409] On April 27, 2013, Ethiopian Airlines took a 787 on the model's first commercial flight after battery system modifications.[407][408]

On January 14, 2014, a battery in a JAL 787 emitted smoke from the battery's protection exhaust while the aircraft was undergoing pre-flight maintenance at Tokyo Narita Airport.[410][411] The battery partially melted in the incident;[412] one of its eight lithium-ion cells had its relief port vent and fluid sprayed inside the battery's container.[413] It was later reported that the battery may have reached a temperature as high as 1,220 °F (660 °C), and that Boeing did not understand the root cause of the failure.[414]

The NTSB has criticized FAA, Boeing, and battery manufacturers for the faults in a 2014 report.[415][416][417][418] It also criticized the GE-made flight data and cockpit voice recorder in the same report.[419] The enclosure Boeing added is 185 lb (84 kg) heavier, negating the lighter battery potential.[420]

Aircraft on display

All three prototype 787-8s are preserved in museums.


External image
Boeing 787 cutaway
Cutaway drawing from Flight International
787 characteristics[425]
Model 787-8 787-9 787-10
Cockpit crew Two
Seating, 2-class 242: 24J @85" + 218Y @32" 290: 28J @85" + 262Y @32" 330: 32J @85" + 298Y @32"
Seating, 1-class max. 359, exit limit 381 max. 406, exit limit 420 max. 440, exit limit 440
Length 186 ft 1 in (56.72 m) 206 ft 1 in (62.81 m) 224 ft (68.28 m)
Wing[426] 9.59 aspect ratio, 4,058 sq ft (377 m2) area, 32.2° Wing sweep[427]
Wingspan[426] 197 ft 3 in (60.12 m) span, 246.9 in / 6.27 m mean chord.
Height[425] 55 ft 6 in (16.92 m) 55 ft 10 in (17.02 m)
Fuselage Cabin width: 18 ft 0 in (5.49 m)[428] External width: 18 ft 11 in (5.77 m), height: 19 ft 6 in (5.94 m)
Cargo capacity 4,826 ft³ /136.7 m³
28 LD3 or 9 (88×125) pallets
6,090 ft³ / 172.5 m³
36 LD3 or 11 (96×125) pallets
6,722 ft³ / 191.4 m³
40 LD3 or 13 (96×125) pallets
MTOW 502,500 lb / 227,930 kg 560,000 lb / 254,011 kg
Maximum Payload 90,500 lb / 43,318 kg 116,000 lb / 52,587 kg 126,300 lb / 57,277  kg
OEW 264,500 lb / 119,950 kg 284,000 lb / 128,850 kg 298,700 lb / 135,500 kg
Fuel capacity 33,340 US gal / 126,206 L
223,378 lb / 101,323 kg
33,384 US gal / 126,372 L
223,673 lb / 101,456 kg
Speed Max: Mach 0.90 (516 kn; 956 km/h);[426] Cruise: Mach 0.85 (488 kn; 903 km/h)
Range[lower-alpha 1][262] 7,355 nmi (13,620 km) 7,635 nmi (14,140 km) 6,430 nmi (11,910 km)
Takeoff[lower-alpha 2] 8,500 ft (2,600 m) 9,300 ft (2,800 m) 9,100 ft (2,800 m)
Ceiling[429] 43,100 ft (13,100 m) 41,100 ft (12,500 m)
Engines (×2) General Electric GEnx-1B or Rolls-Royce Trent 1000
Thrust (×2) 64,000 lbf (280 kN) 71,000 lbf (320 kN) 76,000 lbf (340 kN)
  1. Typical seating
  2. MTOW (ISA, SL, hi thrust)

See also

Related development

Aircraft of comparable role, configuration and era

Related lists



  1. "Boeing 787: Orders and Deliveries (updated monthly)". The Boeing Company. November 30, 2019. Retrieved December 10, 2019.
  2. Gates, Dominic (September 24, 2011). "Boeing celebrates 787 delivery as program's costs top $32 billion". The Seattle Times. Retrieved September 26, 2011.
  3. "About Boeing Commercial Airplanes: Prices". Boeing.
  4. Gunter, Lori (July 2002). "The Need for Speed, Boeing's Sonic Cruiser team focuses on the future". Boeing Frontier magazine. Retrieved January 21, 2011.
  5. Banks, Howard (May 28, 2001). "Paper plane: That Mach 0.95 Sonic Cruiser from Boeing will never fly. Here's why". Forbes. Archived from the original on October 16, 2007. Retrieved June 7, 2007.
  6. Norris, G; Thomas, G; Wagner, M; Forbes Smith, C (2005). Boeing 787 Dreamliner – Flying Redefined. Aerospace Technical Publications International. ISBN 978-0-9752341-2-9.
  7. "History of the Boeing 787". The Seattle Times. Associated Press. June 23, 2000. Archived from the original on June 6, 2013. Retrieved October 28, 2012.
  8. Cannegieter, Roger. "Long Range vs. Ultra High Capacity". Retrieved October 12, 2015.
  9. Babej, Marc E.; Pollak, Tim (May 24, 2006). "Boeing Versus Airbus". Forbes. Retrieved April 8, 2010.
  10. Randy Baseler (May 20, 2005). "Kangaroo hop". Randy's Journal. The Boeing Company.
  11. Tkacik, Maureen (September 18, 2019). "Crash Course" via The New Republic.
  12. "Maximizing the Middle, Finding the sweet spot in the market" (Press release). Boeing Frontier magazine. March 2003.
  13. "Boeing Achieves 787 Power On" (Press release). Boeing. June 20, 2008.
  14. "Daydream believer: How different is the Boeing 787?". Flight International. Retrieved December 14, 2010.
  15. "Name Your Plane sweepstakes". Boeing Frontiers Online. July 2003. Retrieved September 28, 2007.
  16. Norris & Wagner 2009, p. 40.
  17. "New Boeing 7E7 Airplane Gets a Name". Boeing, June 15, 2003.
  18. "Boeing Launches 7E7 Dreamliner" (Press release). Boeing. April 26, 2004. Retrieved June 14, 2011.
  19. "ANA says Denver still in hunt for non-stop to Tokyo". Metro Denver. April 8, 2009. Archived from the original on January 3, 2011. Retrieved December 14, 2010.
  20. Shifrin, Carole (March 27, 2006). "Dream start". Flight International. Retrieved September 27, 2015.
  21. "The Dream of Composites". R&D Magazine. November 20, 2006. Retrieved November 23, 2012.
  22. Walz, Martha (November 20, 2006). "The Dream of Composites". RD mag. Retrieved September 2, 2011.
  23. Norris, Guy (January 9, 2009). "Boeing Rules Out 787 Window Change". Aviation Week.
  24. Ogando, Joseph (June 7, 2007). "Design News – Features – Boeing's 'More Electric' 787 Dreamliner Spurs Engine Evolution". Retrieved September 7, 2011.
  25. Norris & Wagner 2009, p. 48.
  26. "Boeing news - Fired engineer calls 787's plastic fuselage unsafe". Seattle Times.
  27. "Review - History of 787 Composites Project at Boeing" (PDF).
  28. Pandey, Mohan (2010). How Boeing Defied the Airbus Challenge. USA: Createspace. ISBN 978-1-4505-0113-2.
  29. Marsh, George (2009). "Boeing's 787: trials, tribulations, and restoring the dream". Reinforced Plastics. 53 (8): 16–21. doi:10.1016/S0034-3617(09)70311-X.
  30. "Boeing boosts aircraft prices 5.5% on rising cost of labor, materials". Air Transport World. June 26, 2007. Retrieved September 2, 2011.
  31. "Boeing Unveils 787 Final Assembly Factory Flow." Boeing, December 6, 2006. Retrieved September 3, 2011.
  32. "Boeing's Big Dream". Fortune. May 5, 2008. p. 182.. (online version) Archived July 30, 2013, at the Wayback Machine.
  33. "Boeing unveils 787 Dreamliner; Airbus sends congrats". USA Today. July 9, 2007. Retrieved September 2, 2011.
  34. "Boeing's Big Dream". Fortune. May 5, 2008. p. 187.
  35. "Boeing Revises 787 First Flight and Delivery Plans; Adds Schedule Margin to Reduce Risk of Further Delays" (Press release). Boeing. April 9, 2008. Archived from the original on September 15, 2011. Retrieved September 2, 2011.
  36. "Boeing's Big Dream", Fortune, May 5, 2008, p. 182.
  37. "Boeing considers moving 787-9 tail build in-house". ATW Online. October 30, 2010. Retrieved October 30, 2010.
  38. Thisdell, Dan (February 4, 2013). "In focus: Debt dogs Finmeccanica". Flightglobal. Retrieved April 18, 2015.
  39. "Boeing's Big Dream", Fortune, May 5, 2008, p. 184.
  40. Seo, Sookyung (September 29, 2010). "Boeing 787 Supplier Korea Aerospace Hires Share-Sale Arrangers". Bloomberg. Retrieved September 2, 2011.
  41. "Boeing Completes Acquisition of Vought Operations in South Carolina" (Press release). Boeing. July 30, 2009. Retrieved September 2, 2011.
  42. Gates, D. (September 11, 2005). "Boeing 787: Parts from around world will be swiftly integrated". The Seattle Times. Retrieved September 2, 2011.
  43. "Korean Air to Buy 10 '787 Dreamliners'". The Korea Times. July 12, 2007.
  44. "Boeing" (PDF). HCL Technologies. Retrieved January 20, 2013.
  45. "India's Tata Group to supply parts for Boeing Dreamliner". Google. Agence France-Presse. February 6, 2008. Retrieved February 7, 2008.
  46. Bhagwat, Ramu (February 7, 2008). "Tatas to make Boeing 787 parts at Mihan". The Times of India. Times News Network. Retrieved September 2, 2011.
  47. "787 Dreamliner International team facts" (Press release). Boeing. Retrieved June 10, 2010.
  48. "Korean Air ready for 787 ramp up". The Brisbane Times. September 30, 2010. Retrieved September 3, 2011.
  49. "Boeing's Big Dream". Fortune. May 5, 2008. p. 189.
  50. Kennedy, Bill. "Wheels up", Cutting Tool Engineering, March 2009. Retrieved January 14, 2014.
  51. Coulom, Dan (August 20, 2007). "Hamilton Sundstrand delivers first cabin air conditioning packs for Boeing 787 Dreamliner" (press release). Hamilton Sundstrand. Archived from the original on August 28, 2007. Retrieved August 21, 2007.
  52. Gates, Dominic (May 15, 2007). "Boeing shares work, but guards its secrets". The Seattle Times. Retrieved September 2, 2011.
  53. Moores, Victoria. "Pictures: Boeing begins 787 final assembly". Flight International, May 22, 2007.
  54. "Weight remains challenge for Boeing as 787 progresses". Flightglobal. November 6, 2006. Retrieved May 23, 2015.
  55. "Boeing Still Working On 787 Weight Issue, Carson Says". Associated Press. December 7, 2006. Retrieved July 22, 2016.
  56. "Boeing to deliver test 787s to its customers". Financial Times. July 6, 2007.
  57. Wallace, James (December 7, 2006). "Virtual rollout of the 78". Seattle Post-Intelligencer. Hearst Communications Inc. Retrieved September 2, 2011.
  58. Dominic Gates (December 23, 2009). "Boeing's 787 Dreamliner is no lightweight". Los Angeles Times. Retrieved January 21, 2013.
  59. Johnsson, Julie (February 24, 2015). "Boeing Lining Up Buyers for Early Overweight Dreamliners". Bloomberg.
  60. Scott, Alwyn (July 24, 2015). "Boeing looks at pricey titanium in bid to stem 787 losses". Seattle. Reuters. Retrieved August 2, 2015.
  61. "Boeing Celebrates the Premiere of the 787 Dreamliner" (Press release). Boeing. July 8, 2007. Retrieved June 14, 2011.
  62. "Boeing Celebrates the Premiere of the 787 Dreamliner" (Press release). Boeing. July 8, 2007. Archived from the original on June 29, 2011. Retrieved January 21, 2011.
  63. Trimble, Stephen (September 10, 2007). "Boeing 787 first flight suffers two-month delay". Flight International. Retrieved September 2, 2011.
  64. "Boeing Delays 787's First Flight to November–December (Update4)". Bloomberg. September 5, 2007. Retrieved September 3, 2011.
  65. Clark, Nicola (October 10, 2007). "Boeing Delays Deliveries of 787". The New York Times. Retrieved December 22, 2007.
  66. "Boeing Reschedules Initial 787 Deliveries and First Flight". Boeing. October 10, 2007. Archived from the original on November 3, 2011. Retrieved September 3, 2011.
  67. "787 Program Chief Replaced at Boeing". The New York Times. Associated Press. October 17, 2007. Retrieved November 24, 2007.
  68. "Boeing Shifts Schedule for 787 First Flight" (Press release). Boeing. January 16, 2008. Archived from the original on January 19, 2008.
  69. Sanders, Peter (July 8, 2009). "Boeing Sets Deal to Buy a Dreamliner Plant". The Wall Street Journal.
  70. Stephen Trimble (April 11, 2008). "787 variants delayed to at least 2012". Flight International. Archived from the original on October 15, 2008.
  71. Gates, Dominic (November 5, 2008). "Fasteners incorrectly installed". The Seattle Times. Retrieved November 11, 2008.
  72. "Boeing says 787 test flight delayed again". CNN. November 4, 2008. Archived from the original on November 8, 2008.
  73. "Boeing Reviews Dreamliner Schedule for More Delays (Update2)". Bloomberg. December 4, 2008. Retrieved September 2, 2011.
  74. "Boeing confirms 787 first flight pushed back to 2Q 2009". Flight International. December 11, 2008. Retrieved December 14, 2010.
  75. "United may seek damages for 787 delays". PSBJ. February 27, 2012. Retrieved March 14, 2012.
  76. "Govt approves Air India compensation package for Dreamliner delay". July 25, 2012. Retrieved July 25, 2012.
  77. "Boeing performs crash test on 787 fuselage section". Komo News. August 23, 2007. Retrieved July 22, 2016.
  78. Snyder, Sean, ed. (August 29, 2007). "Boeing Performs Crash Test on 787 Dreamliner: Tests currently under analysis". Design News. Reed Elsevier. Archived from the original on December 17, 2011. Retrieved September 9, 2011.
  79. Gillespie, Elizabeth M (September 6, 2007). "Boeing Says 787 Fuselage Test a Success". Forbes. Archived from the original on September 6, 2007. Retrieved September 7, 2007.
  80. Snyder, Sean, ed. (September 6, 2007). "Announcement of Boeing Fuselage Crash Test Results". Design News. Archived from the original on December 17, 2011. Retrieved September 9, 2011.
  81. Gates, Dominic (September 18, 2007). "Fired engineer calls 787's plastic fuselage unsafe". The Seattle Times. Retrieved November 24, 2007.
  82. Matlack, Carol (June 26, 2009). "More Boeing 787 Woes as Qantas Drops Order". Bloomberg BusinessWeek. Bloomberg. Retrieved December 14, 2010.
  83. Gates, Dominic. (September 18, 2007) "Boeing news |Fired engineer calls 787's plastic fuselage unsafe". The Seattle Times. Retrieved 2014-03-13.
  84. "European and US regulators certify Trent 1000 for Boeing 787". Flight International. Retrieved December 14, 2010.
  85. "GEnx-1B Engine Receives FAA Certification" (press release). GE Aviation. March 31, 2008. Archived from the original on April 5, 2008. Retrieved April 4, 2008.
  86. "PowerOn Interactive Site". TPN interactive. Archived from the original on July 27, 2011. Retrieved December 14, 2010.
  87. "Boeing Completes 787 Dreamliner 'High Blow' Test" (Press release). Boeing. September 27, 2008. Retrieved September 2, 2011.
  88. "FAA Approves Boeing 787 Dreamliner Maintenance Program" (Press release). Boeing. December 22, 2008. Retrieved September 2, 2011.
  89. "Boeing 787 Dreamliner Moves to Flight Line for Testing" (Press release). Boeing. May 3, 2009. Archived from the original on May 5, 2009. Retrieved May 3, 2009.
  90. "Bernstein Research sees further 787 delays, bigger range shortfall". ATW Daily News. May 4, 2009. Retrieved September 9, 2011.
  91. Ostrower, Jon. "Boeing confirms 787 weight issues". Flight International, May 7, 2009. Retrieved September 2, 2011.
  92. Ostrower, Jon. "Concerns raised over expected 787 range shortfall". Flight International, March 9, 2009. Retrieved September 2, 2011.
  93. Ostrower, Jon. "Shanghai casts doubt over early 787 delivery slots". Flight International, March 14, 2009. Retrieved September 2, 2011.
  94. "Boeing Postpones 787 First Flight" (Press release). Boeing. June 23, 2009.
  95. "Dreamliner 787 Composites Approach Takes Another Big Hit". Design News. September 10, 2009. Archived from the original on September 24, 2009. Retrieved September 11, 2009.
  96. "Boeing Announces New 787 Schedule and Third-Quarter Charge" (Press release). Boeing. August 27, 2009.
  97. Gates, Dominic (August 28, 2009). "Boeing still sure delayed 787 will be profitable". The Seattle Times. Retrieved September 23, 2009.
  98. Cohen, Aubrey (April 20, 2011). "Boeing illegally put second 787 line in S.C., complaint says". Seattle Post-Intelligencer.
  99. "Boeing Completes 787 Dreamliner High-Speed Taxi Test" (Press release). Boeing. December 12, 2009. Retrieved September 3, 2011.
  100. "787 approaches final gauntlet testing". Flight International. December 8, 2009. Retrieved December 15, 2009.
  101. "Boeing 787 Dreamliner Completes First Flight" (Press release). Boeing. December 15, 2009.
  102. Dominic Gates (December 16, 2009). "Rain shortens 787 first flight, fails to dampen optimism". Seattle Times.
  103. Jon Ostrower (December 22, 2009). "787 first flight is just the start for gruelling programme". Flight International.
  104. "Boeing Commercial Airplane Group No.2". FlightAware. December 22, 2009.
  105. "Second Boeing 787 Dreamliner Completes First Flight". Boeing, December 22, 2009. Retrieved September 2011.
  106. "787 Dreamliner Flight Test site". Boeing. Retrieved August 15, 2011.
  107. Ostrower, Jon. "Boeing completes 787 flutter and ground effects testing". Flight International, March 24, 2010. Retrieved September 3, 2011.
  108. "Boeing Completes Ultimate-Load Wing Test on 787" (Press release). Boeing. March 28, 2010. Retrieved March 30, 2010.
  109. Sanders, Peter (March 30, 2010). "Boeing's Dreamliner Lags Testing Schedule". The Wall Street Journal. Retrieved September 2, 2011.
  110. Paur, Jason (March 29, 2010). "Boeing 787 Passes Incredible Wing Flex Test". Wired.
  111. "Boeing Confirms Success on 787 Wing, Fuselage Ultimate Load Test" (Press release). Boeing. April 7, 2010.
  112. "Boeing 787 in hot/cold testing in Florida". UPI, April 23, 2010. Retrieved September 3, 2011.
  113. "First 787 GEnx Engine Runs Complete". Boeing, May 12, 2010.
  114. "VIDEO: GEnx powered 787 completes maiden flight". Flight International. Retrieved July 21, 2010.
  115. "Horizontal stabiliser gaps force 787 inspections and reduced flight envelope". Flight International. June 25, 2010. Retrieved June 26, 2010.
  116. Jason Paur (June 17, 2010). "Boeing 787 Withstands Lightning Strike". Wired.
  117. "FAA Probes American's Inspections". The Wall Street Journal, May 16, 2008, p. B1.
  118. Gates, Dominic. "Building the 787, When lightning strikes". The Seattle Times, March 5, 2006. Retrieved September 3, 2011.
  119. Gates, Dominic (February 8, 2009). "FAA to loosen fuel-tank safety rules, benefiting Boeing's 787". The Seattle Times. Retrieved September 2, 2011.
  120. "Dreamliner lands at Farnborough". BBC News, July 18, 2010. Retrieved July 18, 2010.
  121. Mustoe, Howard (August 24, 2010). "Rolls-Royce Blowout Shutters Boeing, Airbus Test Bed". Bloomberg. Archived from the original on January 18, 2013. Retrieved August 29, 2010.
  122. "Boeing delays delivery of 787 aircraft until next year". BBC. August 27, 2010. Retrieved August 27, 2010.
  123. Ostrower, Jon (August 28, 2010). "Lack of production engine for Airplane Nine drives 787 delay". Flight International. Retrieved August 29, 2010.
  124. "Boeing faces claim on 787 delays; sixth flight test aircraft won't fly until September". ATW Online. August 16, 2010. Retrieved August 16, 2010.
  125. "787 flight test fleet to expand". ATW Online. September 10, 2010. Retrieved September 9, 2010.
  126. Norris, Guy (September 16, 2010). "Boeing 787 Suffers Engine Surge During Tests; Deliveries May Slip Again". Aviation Week.
  127. "Sixth Boeing 787 Makes First Flight, Testing Program Making Good Progress". Boeing, October 4, 2010.
  128. Gates, Dominic (November 9, 2010). "Electrical fire forces emergency landing of 787 test plane". The Seattle Times. Retrieved November 9, 2010.
  129. "Boeing 787 Makes Emergency Landing On Test Flight". NPR. Associated Press. November 9, 2010. Archived from the original on November 14, 2010. Retrieved November 9, 2010.
  130. "787 electrical fire raises prospect of further delay". Flightglobal. November 15, 2010. Retrieved November 15, 2010.
  131. Norris, Guy. "787s Grounded After Emergency Landing". Aviation Week, November 10, 2010. Retrieved June 14, 2011.
  132. Norris, Guy (November 11, 2010). "787s Remain Grounded As Investigation Continues". Aviation Week.
  133. Rothman, Andrea. "Boeing 787 Fire Sparked by Stray Tool". Bloomberg, November 25, 2010.
  134. Ostrower, Jon. "787 flight tests resume, final schedule unclear". Air Transport Intelligence, December 23, 2010. Retrieved September 2, 2011.
  135. "Boeing Resumes 787 Flight Testing". Boeing, December 23, 2010.
  136. "Boeing faces prospect of further 787 delay". Flight International. November 5, 2010. Retrieved November 6, 2010.
  137. "JAL hit by further 787 delivery delay". Air Transport Intelligence. November 4, 2010. Retrieved November 6, 2010.
  138. "Boeing Sets 787 First Delivery for Third Quarter" (Press release). Boeing. January 18, 2011. Retrieved September 2, 2011.
  139. "Boeing expects first 787 delivery in the third quarter". Flight International. January 18, 2011.
  140. Ostrower, Jon (February 24, 2011). "Boeing passes 1,000 787 flights". Air Transport Intelligence. Retrieved September 2, 2011.
  141. Koh, Quintella (July 4, 2011). "All Nippon Airways starts week-long 787 validation". Air Transport Intelligence. Retrieved July 6, 2011.
  142. Ostrower, Jon (August 15, 2011). "Certification flight testing complete, the 787 fleet is still busy". Flightblogger on Archived from the original on December 21, 2011.
  143. Ostrower, Jon. "Boeing confirms 787 certification flight test completion". Air Transport Intelligence, August 17, 2011. Retrieved September 2, 2011.
  144. "787 wins certification from FAA and EASA". Air Transport Intelligence. August 26, 2011. Retrieved August 26, 2011.
  145. "FAA Approves Production of Boeing 787 Dreamliner" (press release). FAA. August 26, 2011. Archived from the original on September 8, 2011. Retrieved August 29, 2011.
  146. Hananel, Sam (December 9, 2011). "Labor board drops high-profile Boeing complaint". Boston Globe. Associated Press.
  147. Peterson, Kyle (April 27, 2012). "Boeing Debuts First 787 Dreamliner in South Carolina". Reuters.
  148. Ostrower, Jon (September 25, 2011). "Boeing formally delivers first 787 to ANA". Flight International.
  149. "Boeing, ANA Complete Contractual Delivery of First 787 Dreamliner" (Press release). Boeing. September 25, 2011.
  150. Tim Hepher (September 27, 2011). "First delivered Boeing 787 takes off for Japan". Reuters.
  151. "Boeing delivers first 787". Associated Press. September 26, 2011.
  152. "Boeing delivers its second 787 and jumbo freighter". The Seattle Times. October 13, 2011.
  153. Tim Kelly (October 26, 2011). "Dreamliner carries its first passengers and Boeing's hopes". Reuters.
  154. "Boeing's Dreamliner completes first commercial flight". BBC News. October 26, 2011.
  155. "ANA launches first long-haul service to Europe on 787 Dreamliner" (PDF) (Press release). ANA. October 5, 2011.
  156. "Boeing 787 Dreamliner Sets Speed, Distance Records" (Press release). Boeing. December 8, 2011.
  157. "Boeing Announces 787 Dream Tour". Boeing. November 23, 2011.
  158. "Boeing, ANA Celebrate First 787 Biofuel Flight" (Press release). Boeing. April 17, 2012.
  159. Steve Creedy (June 12, 2012). "Rave reviews for Boeing's 787". The Australian.
  160. Guy Norris (June 26, 2012). "Operators Reporting Positive 787 Fuel-Burn Results". Aviation Week.
  161. Guy Norris, Cathy Buyck, Adrian Schofield, Madhu Unnikrishnan and Jeremy Torr (July 14, 2014). "Airlines Singing Praises Of 787". Aviation Week and Space Technology. Archived from the original on April 17, 2015.CS1 maint: multiple names: authors list (link)
  162. Ostrower, Jon (June 10, 2014). "Boeing's Key Mission: Cut Dreamliner Cost". The Wall Street Journal. p. B1. Retrieved June 10, 2014.
  163. David Kaminski Morrow (November 6, 2017). "IAG lauds ownership-cost benefit of Level A330s". Flightglobal.
  164. "Boeing tackles 787 APU overheating issue". Aviation Week. May 27, 2013. Retrieved December 8, 2014.
  165. "NTSB urges grounding for certain GEnx-powered 787 and 747-8s". Flight International. September 15, 2012.
  166. Ostrower, Jon (March 8–9, 2014). "New Boeing woe: 787 wing defect". The Wall Street Journal. pp. B1, B4.
  167. Wyndham, David (October 1, 2012). "Aircraft Reliability". AvBuyer. World Aviation Communication Ltd.
  168. Guy Norris (November 24, 2015). "With Better Dispatch Reliability, Boeing 787 Deliveries Reach 350". Aviation Week & Space Technology.
  169. Bjorn Fehrm (May 11, 2017). "ISTAT Asia 2017: The fight for the lead". Leeham.
  170. Brian Sumers (January 22, 2016). "Air Canada's 787 Expansion Plans Still In Play". Aviation Week & Space Technology.
  171. "787: Living the dream with amazing new routes? (Or just another great replacement aircraft?)". Airline Network News & Analysis. August 9, 2017.
  172. "Jet makes history on flight from Australia". BBC News. March 25, 2018. Retrieved March 26, 2018.
  173. "The eye of the storm". The Economist. May 14, 2016. ISSN 0013-0613.
  174. Jonathan R. Laing (April 27, 2013). "Will Boeing's Battery Fix Fly?". Barron's.
  175. Bjorn Fehrm (April 23, 2015). "Bjorn's Corner: Boeing's 787 and Airbus' 350 programs, a snapshot". Leeham News and Comment.
  176. Stephen Trimble (April 22, 2015). "Boeing 787 unit loss declines, but deferred costs rise". Flightglobal.
  177. Jon Ostrower (May 4, 2015). "Boeing Pursues Fresh Deal With Spirit AeroSystems". The Wall Street Journal.
  178. Dominic Gates (October 17, 2015). "Will 787 program ever show an overall profit? Analysts grow more skeptical". Seattle Times.
  179. Walker, Karen (July 21, 2016). "Boeing 787 financial hit underscores cost of launching a new airliner". Air Transport World.
  180. Stephen Trimble (September 13, 2017). "Boeing commits to next production-rate increase for 787". Flightglobal.
  181. James Albaugh (December 4, 2017). "Opinion: Jim Albaugh's Lessons Of Aerospace Success". Aviation Week & Space Technology.
  182. Aircraft Value News (June 11, 2018). "Intense A330/B787 Competition Could Impact Values".
  183. "Boeing displaces Airbus at Hawaiian, wins 787-9 deal; airline cancels A330-800 order". Leeham. February 20, 2018.
  184. Guy Norris, Jens Flottau and Bradley Perrett (December 17, 2018). "Boeing And Airbus Hope To Leave Production Glitches Behind In 2019". Aviation Week & Space Technology.CS1 maint: uses authors parameter (link)
  185. Claims of Shoddy Production Draw Scrutiny to a Second Boeing Jet
  186. "Boeing to cut 787 production rate, cites global trade environment". Leeham News. October 23, 2019.
  187. "Boeing 787: A Matter of Materials – Special Report: Anatomy of a Supply Chain"., December 1, 2007.
  188. "787 Dreamliner Program Fact Sheet". Boeing web page. The Boeing Company. Retrieved July 10, 2007.
  189. Hawk, Jeff (Director Certification, Government and Environment 787 Programs) (May 25, 2005). "The Boeing 787 Dreamliner: More Than an Airplane" (PDF). Presentation to AIAA/AAAF Aircraft Noise and Emissions Reduction Symposium. American Institute of Aeronautics and Astronautics and Association Aéronautique et Astronautique de France. Archived from the original (PDF) on August 8, 2007. Retrieved July 15, 2007.CS1 maint: uses authors parameter (link)
  190. Zaman, K. B. M. Q.; Bridges, J. E.; Huff, D. L. "Evolution from 'Tabs' to 'Chevron Technology' – a Review" (PDF). Proceedings of the 13th Asian Congress of Fluid Mechanics 17–21 December 2010, Dhaka, Bangladesh. NASA Glenn Research Center. Cleveland, Ohio, US: 47–63. Archived from the original (PDF) on November 20, 2012. 1.34 MB.
  191. "Boeing 787 program background". Retrieved May 4, 2007.
  192. Ostrower, Jon. "FARNBOROUGH: Boeing presses on with 787 flight-testing (11 Jul 2010)". Retrieved April 2, 2017.
  193. "Boeing 787 from the Ground Up". Boeing, Aero magazine, QTR_04/06.
  194. Sinnet, Mike (2007). "Saving Fuel and enhancing operational efficiencies" (PDF). Boeing. Retrieved January 17, 2013.
  195. Susanna Ray, Thomas Black & Mary Jane Credeur. "Boeing 787 Groundings Traced to One-of-a-Kind Technology" Bloomberg, January 17, 2013. Retrieved January 17, 2013.
  196. "Taking to the skies", p. 47. Aviation Week and Space Technology, December 10, 2012.
  197. "787 No Bleed Systems". Boeing Aero magazine, Quarter 4, 2007.
  198. 787 integrates new composite wing deicing system. Composites World, December 30, 2008.
  199. Croft, John (July 2006). "Airbus and Boeing spar for middleweight" (PDF). American Institute of Aeronautics and Astronautics. Archived from the original (PDF) on July 10, 2007. Retrieved July 8, 2007.
  200. Universal-type gust alleviation system for aircraft, United States Patent 4905934. Free patents online, original publication March 6, 1990. Retrieved December 9, 2009.
  201. "Taking to the skies". Aviation Week and Space Technology. December 10, 2012. p. 48.
  202. "What is ARINC 661?" Web archive of Engenuity Technologies page.
  203. "Boeing Unveils 787 Dreamliner Flight Deck Archived April 9, 2007, at the Wayback Machine Boeing, August 31, 2005. Retrieved September 2, 2011.
  204. Coppinger, Rob (October 6, 2006). "NASA Orion crew vehicle will use voice controls in Boeing 787-style Honeywell smart cockpit". Flight International. Retrieved October 6, 2006.
  205. Brewin, Bob (January 22, 2013). "A 2006 battery fire destroyed Boeing 787 supplier's facility". Retrieved January 23, 2013.
  206. "Power conversion". Meggitt/Securaplane. Retrieved January 30, 2013.
  207. "Lithium Power". GS Yuasa. Archived from the original on January 16, 2013. Retrieved January 20, 2013.
  208. "Thales selects GS Yuasa for Lithium ion battery system in Boeing's 787 Dreamliner" (PDF). GS Yuasa. Retrieved January 18, 2013.
  209. "Development of Large-sized Lithium-ion Battery for Aviation Applications" (PDF). GS Yuasa. Archived from the original (PDF) on February 3, 2013. Retrieved January 20, 2012.
  210. "Boeing: 787 battery blew up in '06 lab test, burned down building". The Seattle Times. January 24, 2013. Retrieved January 24, 2013.
  211. "FAA Statement". FAA. January 16, 2013. Retrieved January 17, 2013.
  212. McHale, John (April 2005). "AFDX technology to improve communications on Boeing 787". Archived from the original on August 3, 2004. Retrieved July 8, 2007.
  213. Zetter, Kim (January 4, 2008). "FAA: Boeing's New 787 May Be Vulnerable to Hacker Attack". Wired. Retrieved January 6, 2008.
  214. "Special Conditions: Boeing Model 787-8 Airplane; Systems and Data Networks Security—Isolation or Protection From unauthorized Passenger Domain Systems Access". Federal Aviation Administration. U.S. Government Printing Office (GPO). January 3, 2008. Retrieved November 1, 2012. For these design features, the applicable airworthiness regulations do not contain adequate or appropriate safety standards for protection and security of airplane systems and data networks against unauthorized access.
  215. Stephen Trimble (March 28, 2018). "Boeing 787-10 technical description and cutaway". Flightglobal.
  216. Marsh, George (April 8, 2014). "Composites flying high (Part 1)". Materials Today. Retrieved May 23, 2015.
  217. "Market Research Report: Strategic Business Expansion of Carbon Fiber, Torayca" (PDF) (press release). Toray Industries. April 12, 2005. Archived from the original (PDF) on February 4, 2007. Retrieved July 9, 2007.
  218. "Boeing Testing Sample Sonic Cruiser Fuselage". Boeing. July 24, 2002. Archived from the original on December 5, 2008.
  219. "Development Work on Boeing 787 Noses Ahead". Boeing. July 13, 2005. Archived from the original on May 5, 2010. Retrieved June 14, 2011.
  220. William G. Roeseler, Branko Sarh, Max U. Kismarton - The Boeing Company (July 9, 2007). "COMPOSITE STRUCTURES: THE FIRST 100 YEARS" (PDF). 16TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS.CS1 maint: multiple names: authors list (link)
  221. "Dan Rather Reports – Boeing 787 composite concerns (1 of 4)". YouTube. November 7, 2007. Retrieved December 15, 2009.
  222. Holmes, Stanley (June 19, 2006). "The 787 Encounters Turbulence". Bloomberg BusinessWeek. Bloomberg.
  223. Haines, Lester (September 19, 2007). "787 unsafe, claims former Boeing engineer". The Register. Retrieved January 16, 2013.
  224. "Does composite use in airplane manufacturing trade passenger safety for profits?". Fort Worth Star-Telegram. December 3, 2009. Archived from the original on December 6, 2009.
  225. Wallace, James (January 9, 2006). "Airbus to use composites". Seattle Post-Intelligencer. Hearst Communications Inc. Retrieved September 2, 2011.
  226. Bickers, Chaz (July 2006). "Good as GoldCare: Revolutionary 787 fleet support program complements airplane's technical achievements" (PDF). Boeing Frontiers. Boeing. Retrieved September 2, 2011.
  227. Johnsson, Julie (September 2, 2007). "Boeing coining plan for composite parts". Chicago Tribune. Tribune Interactive.
  228. "GR & Boeing Demo. Quiet Technology" (press release). Goodrich. August 16, 2005. Archived from the original on October 19, 2007. Retrieved July 10, 2007.
  229. Corliss, Bryan (June 21, 2009). "What's new, different about the 787". The Daily Herald. Retrieved January 22, 2011.
  230. ""787 Is not Meeting 24hour-Engine Change Promo, lessor says" (PDF). Leeham. July 18, 2005. Archived from the original (PDF) on September 23, 2006. Cite journal requires |journal= (help)
  232. "Airbus and Boeing are head-to-head in the widebody sector". Flightglobal. February 6, 2018.
  233. "Section 2.4 Interior Arrangements; Section 2.5 Cabin Cross–Sections" (PDF). D6-58331, Boeing 787 Airplane Characteristics for Airport Planning. Boeing Commercial Aircraft. December 2015. pp. 10, 13.
  234. Flynn, David. "BA reveals Airbus A380, Boeing 787 Dreamliner seatmaps". Australian Business Traveller. Retrieved December 21, 2012.
  235. Wallace, James (November 18, 2005). "Boeing details 787 improvements". Seattle Post-Intelligencer. Hearst Communications. Retrieved September 2, 2011.
  236. "A330 and A340 family specifications". Airbus. Archived from the original on March 4, 2008.
  237. "A350 XWB Xtra comfort". Airbus. Archived from the original on February 5, 2008.
  238. "Airbus unveils widebody, says A350 XWB will top 787 and 777". Seattle Post-Intelligencer. July 18, 2006. Archived from the original on June 11, 2007.
  239. Advisor, Trip. "British Airways 787-8 Seat Map". SeatGuru. Retrieved August 28, 2014.
  240. Wallace, James (February 22, 2006). "Aerospace Notebook: More seats sought on 787". Seattle-PI. Retrieved February 12, 2012.
  241. Verghese, Vijay. "A survey of the best airline economy seats". Smart travel Asia. Retrieved February 12, 2012.
  242. "Why I tell people to avoid flying on a 787". January 22, 2015. Retrieved September 5, 2016.
  243. "Negative feedback prompts British Airways to widen seats for 787-9". August 23, 2015. Retrieved September 5, 2016.
  244. Morrison, Geoffrey. "15 hours on a Boeing 787 Dreamliner, in coach". Retrieved September 5, 2016.
  245. Wallace, James (June 5, 2007). "Aerospace Notebook: In Airbus, Boeing duel, jet windows a shut case". Seattle Post-Intelligencer. Retrieved September 2, 2011.
  246. Wallace, James (November 26, 2008). "Continental plans Dreamliner seats to be roomy, with a view". Seattle Post-Intelligencer. Archived from the original on November 20, 2008. Retrieved November 28, 2008.
  247. Norris & Wagner 2009, p. 49.
  248. Norris, Guy (December 20, 2005). "Qantas deal sees launch of 787-9". Flight International. Reed Elsevier.
  249. Schofield, Adrian (June 24, 2012). "The 787 windows issue (with pics)". Aviation Week. Archived from the original on January 20, 2013. Retrieved January 29, 2013.
  250. Parker Brown, David (June 21, 2012). "ANA is NOT Looking to Install Sunshades on their Boeing 787s — No Complaints Were Received". Airline Reporter. Retrieved January 27, 2013.
  251. Turner, Edgar (2010). The Birth of the 787 Dreamliner. Kansas City, MO: Andrews McMeel. p. 220. ISBN 978-0-7407-9667-8.
  252. Flynn, David (October 26, 2011). "Light fantastic: Boeing 787 Dreamliner's digital window tinting". Australian Business Traveller. Retrieved January 27, 2013.
  253. "Interior Lighting Systems, Mood Lighting". Germany: Diehl Aerospace. Archived from the original on March 17, 2012. Retrieved May 1, 2007.
  254. "Mood Lighting System". Diehl Aerospace. 2012. Archived from the original on January 20, 2012. Retrieved January 1, 2012.
  255. Gubisch, Michael (December 20, 2005). "In Focus: Cabin interior advances beyond seats and IFE". Flight International. Reed Elsevier.
  256. Cram, Jennifer (March 26, 2007). "Boeing Unveils Improved Access Features on the 787". Boeing press release. Boeing. Archived from the original on October 11, 2007. Retrieved July 10, 2007.
  257. Adams, Marilyn (November 1, 2006). "Breathe easy, Boeing says". USA Today.
  258. "Boeing 7E7 Offers Preferred Cabin Environment, Study Finds" (Press release). Boeing. July 19, 2004. Archived from the original on November 6, 2011. Retrieved June 14, 2011.
  259. Ogando, Joseph, ed. (June 4, 2007). "Boeing's 'More Electric' 787 Dreamliner Spurs Engine Evolution: On the 787, Boeing eliminated bleed air and relied heavily on electric starter generators". Design News. Retrieved September 9, 2011.
  260. Dornheim, Michael (March 27, 2005). "Massive 787 Electrical System Pressurizes Cabin". Aviation Week & Space Technology.
  261. "aircraft type designators" (PDF). International Civil Aviation Organization.
  262. "787 performance summary". Boeing.
  263. "Boeing to implement structural design change in 787-8 for production commonality". Leeham News. April 17, 2018.
  264. "B767-300ER Historical Value Behavior Defy Expectations". Aircraft Value News. October 29, 2018.
  265. Kingsley-Jones, Max (July 18, 2014). "Aero secrets of Boeing's new Dreamliner". Flightglobal. Archived from the original on July 24, 2014. Retrieved July 24, 2014.
  266. "Boeing clears firm configuration hurdle for 787-9". Flight International. July 1, 2010. Retrieved July 2, 2010.
  267. "Boeing delays first 747-8I and 787-9 deliveries". Flightglobal. October 27, 2011. Retrieved January 20, 2013.
  268. "Boeing 787-9 takes off for maiden flight". Flightglobal. September 17, 2013.
  269. "Boeing completes first flight of 2nd 787-9". Flight Global. November 8, 2013.
  270. Stake, Tim (July 7, 2014). "Air NZ 787-9 To Be Showcased at Famous Airshow". Fairfax New Zealand. Retrieved July 12, 2014.
  271. Durston, James (July 9, 2014). "Air New Zealand shows off stunning, all-black Dreamliner". CNN. Retrieved July 9, 2014.
  272. "Air New Zealand operates first 787 service". Australian Aviation. August 9, 2014. Retrieved August 10, 2014.
  273. "ANA sets date for first scheduled flights with Boeing 787-9". All Nippon Airways. Retrieved November 6, 2014.
  274. "United Airlines to Launch Nonstop Service Between Los Angeles and Melbourne, Australia". United Airlines. February 20, 2014. Retrieved March 1, 2014.
  275. "Air China Brings China's First Boeing 787-9 Home". China Aviation Daily. Retrieved July 8, 2016.
  276. Aircraft Value News (May 14, 2018). "A350-900 Lease Rentals Hold Steady".
  277. Guy Norris (December 19, 2016). "Simplicity Is Vital To Boeing 787-10 Execution". Aviation Week & Space Technology.
  278. "Australia-UK: First non-stop flight arrives in London from Perth". BBC News. March 25, 2018. Retrieved March 25, 2018.
  279. "Le plus long vol direct de l'histoire a duré plus de 19 heures". La Presse. Agence France-Presse. October 20, 2019. Retrieved October 20, 2019.
  280. James Wallace (December 21, 2005). "Everett work force for 787 pegged at 1,000". Seattle Post-Intelligencer.
  281. Baseler, Randy (February 8, 2006). "Dash 10". Boeing Blog.
  282. Lunsford, J. Lynn (March 28, 2006). "Boeing to Offer Larger Version of 787 Dreamliner". The Wall Street Journal.
  283. Kaminski-Morrow, David (May 30, 2013). "Singapore to launch 787-10X with order for 30". Flight International.
  284. Flynn, David (May 30, 2013). "Singapore Airlines signs up for Boeing's 787-10X Dreamliner". Australian Business Traveller.
  285. "Boeing Launches 787-10 Dreamliner". Boeing. June 18, 2013.
  287. Trimble, Stephen (June 18, 2013). "PARIS: Boeing launches 787-10 with five customers". Flight International. Retrieved June 29, 2013.
  288. Metcalf, Eddy (June 19, 2013). "Boeing To Launch 787-10 Dreamliner The Most Efficient Jetliner In History". Aviation Online Magazine.
  289. "Air Lease's Hazy Says Boeing 787-10 Beats Airbus on Fuel". Bloomberg. June 18, 2013.
  290. "787-10 Fact Sheet" (PDF). Boeing. July 2015.
  291. "Boeing Completes Detailed Design for the 787-10 Dreamliner" (Press release). Boeing. December 2, 2015.
  292. "Boeing 787-10 Dreamliner Begins Major Assembly" (Press release). Boeing. March 15, 2016.
  293. David Wren (November 30, 2016). "Boeing's first 787-10 Dreamliner moves into final assembly". Charleston Post and Courier.
  294. "Civil Aviation Programs To Watch". Aviation Week & Space Technology. June 9, 2017.
  295. "Boeing Debuts 787-10 Dreamliner" (Press release). Boeing. February 17, 2017.
  296. Stephen Trimble (March 31, 2017). "Boeing achieves first flight of Charleston-built 787-10". FlightGlobal.
  297. Max Kingsley-Jones (June 18, 2017). "Boeing completes a third of 787-10 testing". Flightglobal.
  298. Stephen Trimble (October 3, 2017). "Boeing rolls out first 787-10 built for customer". Flightglobal.
  299. Guy Norris (November 22, 2017). "Boeing Targets 787-10 Test Completion In December". Aviation Week & Space Technology.
  300. David Kaminski Morrow (November 12, 2017). "Emirates set to push 787-10 backlog over 200". Flightglobal.
  301. Wall, Robert; Parasie, Nicolas (November 12, 2017). "Emirates Airline Orders 40 Boeing 787 Dreamliners". The Wall Street Journal. New York City, New York, United States. Retrieved November 13, 2017.
  302. Jens Flottau (November 14, 2017). "Emirates Dismisses A380plus Concept As Negotiations Continue". Aviation Week.
  303. David Kaminski Morrow (November 14, 2017). "Emirates' faith in 787-10 closes window to A350". Flightglobal.
  304. Scott Hamilton (February 4, 2019). "787-10 engines too small for Emirates". Leeham News.
  305. David Kaminski-Morrow (May 11, 2019). "Latest Emirates fleet plan completely omits 787-10s". Flightglobal.
  306. Kaminski-Morrow, David (November 20, 2019). "DUBAI: Emirates to take 30 787-9s and trims 777X deal". Retrieved November 27, 2019.
  307. Stephen Trimble (January 22, 2018). "FAA approves 787-10 for airworthiness". Flightglobal.
  308. "Boeing receives 787-10 production certificate". Flightglobal. February 16, 2018.
  309. "Boeing Delivers World's First 787-10 Dreamliner to Singapore Airlines" (Press release). Boeing. March 25, 2018.
  310. Firdaus Hashim (February 8, 2018). "SIA 787-10 will make May debut to Osaka". Flightglobal.
  311. "Singapore Airlines takes delivery of its first Boeing 787-10". Australian Aviation. June 3, 2018. Retrieved June 17, 2018.
  312. Jon Ostrower (May 30, 2019). "Boeing chases range frontier on 787 and 777X to win Air New Zealand, Qantas deals". The air current.
  313. "Boeing Business Jets". Boeing. June 2018.
  314. Ng, J. "Boeing executive says no freighter version of 787 is likely for 10 years". Marketwatch. Dow Jones. Retrieved January 2, 2008.
  315. Black, Thomas. "Boeing Sets Future 787 Freighter to Fend Off Airbus Jets". BloombergBusiness. Retrieved March 21, 2016.
  316. Butler, Amy (January 29, 2009). "Boeing Only Contender for New Air Force One". Aviation Week & Space Technology. Retrieved February 3, 2015. (subscription required)
  317. Garrett Reim (July 23, 2018). "USAF offers rare glimpse of VC-25B configurations". Flightglobal.
  318. "Boeing 787-3 Dreamliner Fact Sheet". Boeing. Archived from the original on November 19, 2007. Retrieved November 23, 2007.
  319. Rich Breuhaus (May 20, 2008). "787 Dreamliner: A New Airplane for a New World" (PDF). ACI-NA Commissioners Conference. Boeing. Archived from the original (PDF) on March 7, 2017. Retrieved March 6, 2017.
  320. Norris & Wagner 2009, p. 38.
  321. Jon Ostrower (January 8, 2010). "ANA abandons 787-3". Flight International.
  322. "Boeing will likely scrap 787-3". The Seattle Times. February 2, 2010.
  323. "SINGAPORE 2010: 757 replacement gets new focus as 787-3 dwindles". Flightglobal. February 3, 2010.
  324. Susanna Ray (December 13, 2010). "Boeing raises aircraft prices 5.2%, cancels short-haul 787". The Seattle Times.
  325. Thisdell and Seymour Flight International 30 July – 5 August 2019, p. 42.
  326. Michael (August 26, 2011). "Boeing 787 Dreamliner – Date for First Delivery". Flight Story. Retrieved August 26, 2011.
  327. "Boeing Delivers the 787th 787 Dreamliner" (Press release). Boeing. December 13, 2018.
  328. "Orders & Deliveries". The Boeing Company. November 30, 2019. Retrieved December 10, 2019.
  329. "Boeing: Problems with 787 Dreamliner "Normal"". December 16, 2012. Retrieved December 16, 2012.
  330. "Boeing 787 Dreamliner: a timeline of problems". The Telegraph. London. July 28, 2013. Retrieved August 14, 2013.
  331. "Norwegian Boeing 787 engine fragments rain down on cars, houses". Retrieved August 12, 2019.
  332. "Two Boeing 787 incidents raise concerns about jet". Reuters. January 9, 2013. Retrieved January 9, 2013.
  333. "U.S. Opens Dreamliner Safety Probe". The Wall Street Journal. January 9, 2013. Retrieved January 9, 2013.
  334. "U.S. to review Dreamliner amid two more mishaps in Japan". Chicago Tribune. January 11, 2013. Archived from the original on February 15, 2013. Retrieved January 11, 2013.
  335. Topham, Gwyn (January 11, 2013). "Boeing 787 Dreamliner to be investigated by US authorities". The Guardian. London. Retrieved January 11, 2013.
  336. "Japan Airlines Reports New Fuel Leak in Boeing 787". Yahoo! News. Associated Press. January 14, 2013. Retrieved September 27, 2015.
  337. "JAL's grounded Dreamliner jet leaks fuel in tests". Reuters. January 13, 2013. Retrieved January 13, 2013.
  338. Mukai, Anna (January 15, 2013). "Japan to Investigate Boeing 787 Fuel Leak as FAA Reviews". Bloomberg. Retrieved January 20, 2013.
  339. "Heathrow shut after Boeing Dreamliner 787 fire". BBC News. July 12, 2013. Retrieved July 12, 2013.
  340. "Ethiopian 787 In Heathrow Fire Incident". Aviation Week. July 12, 2013. Retrieved July 12, 2013.
  341. Goad, Ben (July 13, 2013). "British investigators: No evidence Dreamliner fire related to batteries". The Hill. Retrieved July 13, 2013.
  342. Martinez, Michael (July 12, 2013). "Fire, 'technical issue' on two Dreamliners raise new worries". CNN. Retrieved July 12, 2013.
  343. "Batteries 'not linked' to 787 fire". BBC. July 13, 2013. Retrieved July 13, 2013.
  344. Ray Massey (July 18, 2013). "Boeing Dreamliner fire at Heathrow linked to ANOTHER lithium battery... this time in the emergency beacon". Daily Mail. London. Retrieved July 28, 2013.
  345. "Heathrow fire on Boeing Dreamliner 'started in battery component'". Guardian newspaper, July 18, 2013.
  346. "Special Bulletin S5/2013 - Boeing 787, ET-AOP" (PDF). Air Accidents Investigation Branch. July 18, 2013. Archived from the original (PDF) on August 4, 2013. Retrieved May 7, 2017.
  347. "UK: 2013 Dreamliner fire caused by crossed wires". Associated Press. Archived from the original on March 5, 2016.
  348. "Qatar grounds a 787 as glitches pile up on Boeing jet". Reuters, July 27, 2013.
  349. Kiyotaka Matsuda & Robert Wall (August 14, 2013). "Boeing 787 Hit by Setback With Fire-Extinguisher Wiring Flaw". Bloomberg. Bloomberg. Retrieved August 16, 2013.
  350. Ostrower, Jon (August 16, 2013). "Boeing Traces Improperly Assembled Engine-Fire Extinguishers to Supplier's Bottles". The Wall Street Journal. Retrieved August 16, 2013.
  351. Koranyi, Balazs; Lawson, Hugh (September 28, 2013). "Norwegian Air takes Dreamliner out of service after breakdowns". Reuters. Retrieved September 28, 2013.
  352. Norwegian airline returns new Dreamliner after repeated breakdowns. The Irish Times
  353. "Boeing warns of engine icing risk on 747-8s, Dreamliners" Yahoo! Finance (October 15, 2013). Retrieved 2014-03-13.
  354. Boeing 787 Dreamliners Disrupt Norwegian Air Shuttle's Operations Archived January 24, 2014, at the Wayback Machine. Businessweek (January 22, 2014). Retrieved 2014-03-13.
  355. Dreamliner grounded as passengers film fuel pouring out of a wing in Bangkok |Mail Online. Daily Mail. Retrieved March 13, 2014.
  356. Bangkok to Oslo flight halted after fuel seen leaking from wing. Retrieved March 13, 2014.
  357. UPDATE 1-Fuel leak on Boeing 787 delays Norwegian Air flight. Reuters (January 21, 2014). Retrieved 2014-03-13.
  358. Koranyi, Balazs. (January 24, 2014) Boeing says Dreamliner reliability 'better, but not satisfactory'. Reuters. Retrieved 2014-03-13.
  359. Treloar, Stephen. (January 24, 2014) 787 Dreamliner's reliability needs to improve further, Boeing exec says |Business & Technology. The Seattle Times. Retrieved 2014-03-13.
  360. STEPHEN TRIMBLE (March 31, 2016). "Boeing, FAA warn 787 pilots of bad airspeed data".
  361. Michael Kaszycki. "Federal Aviation Administration,Airworthiness Directives; The Boeing Company Airplanes" (PDF).
  362. LAURA LORENZETTI. "FAA Says Boeing 787 Dreamliners Have 'Urgent Safety Issue'". Fortune.
  363. "Federal Aviation Administration-14 CFR Part 39" (PDF).
  364. "Accident: ANA B788 near Takamatsu on Jan 16th 2013, battery problem and burning smell on board". Aviation Herald. Retrieved February 8, 2013.
  365. "Japanese airlines ground Boeing 787s after emergency landing". Reuters. January 16, 2013. Retrieved January 16, 2013.
  366. McCurry, Justin (January 16, 2013). "787 emergency landing: Japan grounds entire Boeing Dreamliner fleet". The Guardian. London. Retrieved January 16, 2013.
  367. Cooper, Chris; Matsuda, Kiyotaka (May 1, 2013). "Boeing Dreamliner Grounding Hurts ANA, Japan Airlines Sales". Bloomberg. Tokyo. Retrieved May 27, 2013.
  368. "Press Release". Federal Aviation Administration. January 16, 2013. Retrieved January 17, 2013.
  369. "Dreamliner: Boeing 787 planes grounded on safety fears". News. BBC. January 17, 2013. Retrieved January 17, 2013.
  370. "Airbus CEO 'Confident' Boeing Will Find Fix for 787" (video). Bloomberg. January 17, 2013.
  371. Wall, Robert; Rothman, Andrea (January 17, 2013). "Airbus Says A350 Design Is 'Lower Risk' Than Troubled 787". Bloomberg. Retrieved January 17, 2013. 'I don't believe that anyone's going to switch from one airplane type to another because there's a maintenance issue,' Leahy said. 'Boeing will get this sorted out.'
  372. "Boeing 787 Dreamliner design riskier than our plane: Airbus - The Star".
  373. "'Big Cost' Seen for Boeing Dreamliner Grounding". Bloomberg. January 17, 2013.
  374. White, Martha C (January 17, 2013). "Is the Dreamliner Becoming a Financial Nightmare for Boeing?". Time.
  375. Dudley, Brier (January 17, 2013). "Lithium-ion batteries pack a lot of energy — and challenges". The Seattle Times. Retrieved January 24, 2013. iron phosphate "has been known to sort of be safer."
  376. Dalløkken, Per Erlien (January 17, 2013). "Her er Dreamliner-problemet" (in Norwegian). Teknisk Ukeblad. Retrieved January 17, 2013. English translation
  377. "Energy storage technologies - Lithium". Securaplane. Retrieved January 24, 2013.
  378. "Special Conditions: Boeing Model 787– 8 Airplane; Lithium Ion Battery Installation" (PDF) (PDF). FAA / Federal Register. October 11, 2007. Retrieved January 30, 2013. NM375 Special Conditions No. 25–359–SC
  379. Scott, Alwyn; Saito, Mari. "FAA approval of Boeing 787 battery under scrutiny". NBC News. Reuters. Retrieved January 24, 2013.
  380. Supko; Iverson (2011). "Li battery UN test report applicability" (PDF). Retrieved January 23, 2013.
  381. Nantel, Kelly (January 20, 2013). "NTSB Provides Third Investigative Update on Boeing 787 Battery Fire in Boston". NTSB. Retrieved January 21, 2013.
  382. "Press Release". NTSB. January 26, 2013. Retrieved January 24, 2013.
  383. Weld, Matthew; Mouwad, Jad (January 25, 2013). "Protracted Fire Inquiry Keeping 787 on Ground". The New York Times. Retrieved January 26, 2013.
  384. Mitra-Thakur, Sofia (January 23, 2013). "Japan says 787 battery was not overcharged". Engineering & Technology. Archived from the original on January 25, 2013. Retrieved January 23, 2013.
  385. Drew, Christopher; Tabuchi, Hiroko; Mouawad, Jad (January 29, 2013). "Boeing 787 Battery Was a Concern Before Failure". The New York Times. Retrieved January 30, 2013.
  386. Hradecky, Simon (February 5, 2013). "ANA B788 near Takamatsu on Jan 16th 2013, battery problem and burning smell on board". Aviation Herald. Retrieved February 6, 2013.
  387. Tabuchi, Hiroko (January 28, 2013). "No Quality Problems Found at Battery Maker for 787". The New York Times. Retrieved January 30, 2013.
  388. Cooper, Chris; Matsuda, Kiyotaka (January 28, 2013). "GS Yuasa Shares Surge as Japan Ends Company Inspections". Bloomberg BusinessWeek. Archived from the original on August 23, 2014. Retrieved January 29, 2013.
  389. Knudson, Peter (January 29, 2013). "NTSB issues sixth update on JAL Boeing 787 battery fire investigation". NTSB. Retrieved January 29, 2013.
  390. "FAA grounding all Boeing 787s". KIRO TV. Retrieved January 16, 2013.
  391. "LAN suspende de forma temporal la operación de flota Boeing 787 Dreamliner". La Tercera. January 16, 2013. Retrieved January 16, 2013.
  392. "DGCA directs Air India to ground all six Boeing Dreamliners on safety concerns". The Economic Times. January 17, 2013. Retrieved January 17, 2013.
  393. "European safety agency to ground 787 in line with FAA". Reuters. January 16, 2013. Retrieved January 17, 2013.
  394. "Qatar Airways grounds Boeing Dreamliner fleet". Reuters. January 17, 2013. Retrieved January 17, 2013.
  395. "U.S., others ground Boeing Dreamliner indefinitely". Reuters. January 16, 2013. Retrieved January 17, 2013.
  396. Boeing 787 Dreamliner: The impact of safety concerns. BBC News. January 17, 2013. Retrieved January 17, 2013.
  397. "Dreamliner crisis: Boeing halts 787 jet deliveries". News. UK: BBC. January 1, 1970. Retrieved January 20, 2013.
  398. "FAA approves test flights for Boeing 787". Seatle Times. February 7, 2013. Retrieved September 27, 2015.
  399. Norris, Guy (February 7, 2013). "FAA Gives All Clear For 787 Test Flights". Aviation Week. Retrieved February 9, 2013.
  400. "Boeing 787's battery woes put US approval under scrutiny". Business Standard. February 22, 2013. Retrieved February 22, 2013.
  401. "Boeing 787 Battery Fire Investigative Report and Related Documents". National Transportation Safety Board. Cite journal requires |journal= (help)
  402. "Interim factual report" (PDF). NTSB. March 7, 2013. Cite journal requires |journal= (help)
  403. "NTSB Report Details: Boeing 787 Battery Fire Was Difficult to Control". Time. March 7, 2013. Archived from the original on March 9, 2013.
  404. "Airlines Prepare to Relaunch Their Dreamliners: ANA, Qatar, United Schedule First Flights". Frequent Business Traveler.
  405. Drew, Christopher; Mouawad, Jad (April 20, 2013). "Boeing Fix for Battery Is Approved by FAA". The New York Times.
  406. Yeo, Ghim-Lay (April 19, 2013). "FAA approves 787 battery changes". Flight International. Retrieved April 19, 2013.
  407. "Boeing 787 Dreamliner returns to service in Ethiopia flight". BBC News. April 27, 2013.
  408. Gates, Dominic. "Grounding order formally lifted for Boeing 787". Seattle Times/The Columbian. Retrieved May 1, 2013.
  409. "Japan OKs 787s to fly again". CNN. April 26, 2013. Retrieved April 26, 2013.
  410. "Boeing 787 aircraft grounded after battery problem in Japan". BBC News. January 14, 2014. Retrieved January 16, 2014.
  411. "No damage to JAL 787 in battery incident". Flight International. January 15, 2013. Retrieved January 16, 2014.
  412. "Boeing bent over for new probe as 787 batteries vent fluid, start to MELT".
  413. Ostrower, John, "JAL reports malfunction in battery on Boeing 787", The Wall Street Journal, January 15, 2014, p. B1.
  414. Temperature in failed Dreamliner battery hit 660 Celsius. The Daily Telegraph. Retrieved March 13, 2014.
  415. Knudson, Peter. "NTSB Recommends Process Improvements for Certifying Lithium-ion Batteries as it Concludes its Investigation of the 787 Boston Battery Fire Incident" NTSB, December 1, 2014. Retrieved December 2, 2014.
  416. Hemmerdinger, Jon (December 1, 2014). "NTSB faults Boeing, FAA and contractors for 787 battery fire". Flightglobal. Archived from the original on December 2, 2014. Retrieved December 2, 2014.
  417. Hemmerdinger, Jon (December 1, 2014). "Temperature in 787 battery cells spikes in cold conditions: NTSB". Flightglobal. Archived from the original on December 2, 2014. Retrieved December 2, 2014.
  418. Hemmerdinger, Jon (December 1, 2014). "NTSB 787 battery report details quality concerns at GS Yuasa". Flightglobal. Archived from the original on December 2, 2014. Retrieved December 2, 2014.
  419. Hemmerdinger, Jon (December 2, 2014). "NTSB details issues with 787 flight and data recorder". Flightglobal. Archived from the original on December 2, 2014. Retrieved December 2, 2014.
  420. Thierry Dubois (June 27, 2017). "Lithium-ion Batteries Prove Value On A350". Aviation Week & Space Technology.
  421. "Boeing donates the first 787-8 prototype (N787BA, ZA001) to Nagoya, Japan". World Airline News. Retrieved January 7, 2016.
  422. "DREAMLINER". Pima Air & Space Museum. Retrieved January 7, 2016.
  423. "Boeing 787 Dreamliner". The Museum of Flight. Retrieved April 5, 2015.
  424. "Museum Opens World's First Boeing 787 Dreamliner Exhibit Nov. 8". The Museum of Flight. November 3, 2014. Retrieved November 8, 2014.
  425. "787 Airplane Characteristics for Airport Planning" (PDF). Boeing Commercial Aircraft. March 2018.
  426. "Type certificate data sheet for Boeing 787" (PDF). EASA. November 16, 2017. Archived from the original (PDF) on January 11, 2018. Retrieved January 10, 2018.
  427. "Boeing 787 -8 (Dreamliner) sample analysis". Lissys Ltd. 2006.
  428. "Everything about the Boeing 787 Dreamliner". Flightglobal. July 7, 2007.
  429. "Updated EASA Type certificate data sheet for Boeing 787" (PDF). EASA. October 28, 2019.


  • Norris, Guy; Wagner, Mark (2009). Boeing 787 Dreamliner. Minneapolis: Zenith Press. ISBN 978-0-7603-2815-6.
  • Thisdell, Dan; Seymour, Chris (July 30 – August 5, 2019). "World Airliner Census". Flight International. Vol. 196 no. 5697. pp. 24–47. ISSN 0015-3710.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.