Biodiversity loss

Biodiversity loss is the extinction of species (plant or animal) worldwide, and also the local reduction or loss of species in a certain habitat.

The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent (e.g. through land loss). Global extinction has so far been proven to be irreversible.

Even though permanent global species loss is a more dramatic phenomenon than regional changes in species composition, even minor changes from a healthy stable state can have dramatic influence on the food web and the food chain insofar as reductions in only one species can adversely affect the entire chain (coextinction), leading to an overall reduction in biodiversity, possible alternative stable states of an ecosystem notwithstanding. Ecological effects of biodiversity are usually counteracted by its loss. Reduced biodiversity in particular leads to reduced ecosystem services and eventually poses an immediate danger for food security, also for humankind.[1]

Loss rate

The current rate of global diversity loss is estimated to be 100 to 1000 times higher than the (naturally occurring) background extinction rate and expected to still grow in the upcoming years.[3][4]

Locally bounded loss rates can be measured using species richness and its variation over time. Raw counts may not be as ecologically relevant as relative or absolute abundances. Taking into account the relative frequencies, a considerable number of biodiversity indexes has been developed. Besides richness, evenness and heterogeneity are considered to be the main dimensions along which diversity can be measured.[1]

As with all diversity measures, it is essential to accurately classify the spatial and temporal scope of the observation. "Definitions tend to become less precise as the complexity of the subject increases and the associated spatial and temporal scales widen."[5] Biodiversity itself is not a single concept but can be split up into various scales (e.g. ecosystem diversity vs. habitat diversity or even biodiversity vs. habitat diversity[5]) or different subcategories (e.g. phylogenetic diversity, species diversity, genetic diversity, nucleotide diversity). The question of net loss in confined regions is often a matter of debate but longer observation times are generally thought to be beneficial to loss estimates.[6][7]

To compare rates between different geographic regions latitudinal gradients in species diversity should also be considered.


Major factors for biotic stress and the ensuing accelerating loss rate are, amongst other threats:[8]

  1. Habitat loss and degradation
    Land use intensification (and ensuing land loss/habitat loss) has been identified to be a significant factor in loss of ecological services due to direct effects as well as biodiversity loss.[9]
  2. Climate change through heat stress and drought stress
  3. Excessive nutrient load and other forms of pollution
  4. Over-exploitation and unsustainable use (e.g. unsustainable fishing methods) we are currently using 25% more natural resources than the planet
  5. Armed conflict, which disrupts human livelihoods and institutions, contributes to habitat loss, and intensifies over-exploitation of economically valuable species, leading to population declines and local extinctions.[10]
  6. Invasive alien species that effectively compete for a niche, replacing indigenous species[11]
  7. Human activity has left the Earth struggling to sustain life, due to the demands humans have. As well as leaving around 30% of mammal, amphibian, and bird species endangered.[12]

Insect loss

In 2017, various publications describe the dramatic reduction in absolute insect biomass and number of species in Germany and North America over a period of 27 years.[13][14] As possible reasons for the decline, the authors highlight neonicotinoids and other agrochemicals. Writing in the journal PLOS One, Hallman et al. (2017) conclude that "the widespread insect biomass decline is alarming."[15]

Birds loss

Certain types of pesticides named Neonicotinoids probably contributing to decline of certain bird species.[16]

Food and agriculture

In 2019, the UN's Food and Agriculture Organization produced its first report on The State of the World’s Biodiversity for Food and Agriculture, which warned that "Many key components of biodiversity for food and agriculture at genetic, species and ecosystem levels are in decline."[17][18] The report states that this is being caused by “a variety of drivers operating at a range of levels” and more specifically that “major global trends such as changes in climate, international markets and demography give rise to more immediate drivers such as land-use change, pollution and overuse of external inputs, overharvesting and the proliferation of invasive species. Interactions between drivers often exacerbate their effects on BFA [i.e. biodiversity for food and agriculture]. Demographic changes, urbanization, markets, trade and consumer preferences are reported [by the countries that provided inputs to the report] to have a strong influence on food systems, frequently with negative consequences for BFA and the ecosystem services it provides. However, such drivers are also reported to open opportunities to make food systems more sustainable, for example through the development of markets for biodiversity-friendly products.”[19] It further states that “the driver mentioned by the highest number of countries as having negative effects on regulating and supporting ecosystem services [in food and agricultural production systems] is changes in land and water use and management” and that  “loss and degradation of forest and aquatic ecosystems and, in many production systems, transition to intensive production of a reduced number of species, breeds and varieties, remain major drivers of loss of BFA and ecosystem services.”[19]

The 2019 IPBES Global Assessment Report on Biodiversity and Ecosystem Services asserts that industrial farming is a significant factor in collapsing biodiversity.[20] The health of humans is largely dependent on the product of an ecosystem. With biodiversity loss, a huge impact on human health comes as well. Biodiversity makes it possible for humans to have a sustainable level of soils and the means to have the genetic factors in order to have food.[21]

See also


 This article incorporates text from a free content work. Licensed under CC BY-SA IGO 3.0 License statement: The State of the World's Biodiversity for Food and Agriculture − In Brief, FAO, FAO. To learn how to add open license text to Wikipedia articles, please see this how-to page. For information on reusing text from Wikipedia, please see the terms of use.


  1. Cardinale, Bradley; et al. (2012). "Biodiversity loss and its impact on humanity" (PDF). Nature. 486 (7401): 59–67. Bibcode:2012Natur.486...59C. doi:10.1038/nature11148. PMID 22678280. the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.
  2. "A plague of people". Cosmos. 13 May 2010. Archived from the original on 6 November 2016.
  3. Ceballos, Gerardo; et al. (2015). "Accelerated modern human–induced species losses: Entering the sixth mass extinction". Science Advances. 1 (5): e1400253. Bibcode:2015SciA....1E0253C. doi:10.1126/sciadv.1400253. PMC 4640606. PMID 26601195.
  4. De Vos, Jurriaan; et al. (2015). "Estimating the normal background rate of species extinction" (PDF). Conservation Biology. 29 (2): 452–462. doi:10.1111/cobi.12380. PMID 25159086.
  5. Tagliapietra, Davide; Sigovini, Marco. "Biological diversity and habitat diversity: a matter of Science and perception". Terre et Environnement (PDF). 88. pp. 147–155. ISBN 2-940153-87-6. Archived from the original (PDF) on 2 February 2017. Retrieved 18 September 2019.
  6. Gonzalez, Andrew; Cardinale, Bradley J.; Allington, Ginger R. H.; Byrnes, Jarrett; Arthur Endsley, K.; Brown, Daniel G.; Hooper, David U.; Isbell, Forest; O'Connor, Mary I.; Loreau, Michel (2016). "Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity". Ecology. 97 (8): 1949–1960. doi:10.1890/15-1759.1. PMID 27859190. two recent data meta-analyses have found that species richness is decreasing in some locations and is increasing in others. When these trends are combined, these papers argued there has been no net change in species richness, and suggested this pattern is globally representative of biodiversity change at local scales
  7. Bradley Cardinale (2014-06-06). "Overlooked local biodiversity loss (letter and response)". Science. 344 (6188): 1098. doi:10.1126/science.344.6188.1098-a. PMID 24904146.
  8. "Global Biodiversity Outlook 3". Convention on Biological Diversity. 2010.
  9. Allan, Eric; Manning, Pete; Alt, Fabian; Binkenstein, Julia; Blaser, Stefan; Blüthgen, Nico; Böhm, Stefan; Grassein, Fabrice; Hölzel, Norbert; Klaus, Valentin H.; Kleinebecker, Till; Morris, E. Kathryn; Oelmann, Yvonne; Prati, Daniel; Renner, Swen C.; Rillig, Matthias C.; Schaefer, Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily; Sorkau, Elisabeth; Steckel, Juliane; Steffen-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Weiner, Christiane N.; Weisser, Wolfgang W.; et al. (2015). "Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition". Ecol. Lett. 18 (8): 834–843. doi:10.1111/ele.12469. PMC 4744976. PMID 26096863.
  10. Daskin, Joshua H.; Pringle, Robert M. (2018). "Warfare and wildlife declines in Africa's protected areas". Nature. 553 (7688): 328–332. Bibcode:2018Natur.553..328D. doi:10.1038/nature25194. PMID 29320475.
  11. Walsh JR, Carpenter SR, Vander Zanden MJ (2016). "Invasive species triggers a massive loss of ecosystem services through a trophic cascade". Proc Natl Acad Sci U S A. 13 (15): 4081–5. Bibcode:2016PNAS..113.4081W. doi:10.1073/pnas.1600366113. PMC 4839401. PMID 27001838.
  12. Shah, Anup. "Loss of Biodiversity and Extinctions". Global Issues. Retrieved 3 May 2019.
  13. Dicks, Lynn V.; Viana, Blandina; Bommarco, Riccardo; Brosi, Berry; Arizmendi, María del Coro; Cunningham, Saul A.; Galetto, Leonardo; Hill, Rosemary; Lopes, Ariadna V.; Pires, Carmen; Taki, Hisatomo; Potts, Simon G. (2016-11-25). "Ten policies for pollinators" (PDF). Science. 354 (6315): 975–976. Bibcode:2016Sci...354..975D. doi:10.1126/science.aai9226. PMID 27884996.
  14. "Where have all the insects gone?". Science | AAAS. 2017-05-09. Retrieved 2017-10-20.
  15. Hallmann, Caspar A.; Sorg, Martin; Jongejans, Eelke; Siepel, Henk; Hofland, Nick; Schwan, Heinz; Stenmans, Werner; Müller, Andreas; Sumser, Hubert; Hörren, Thomas; Goulson, Dave; de Kroon, Hans (2017-10-18). Lamb, Eric Gordon (ed.). "More than 75 percent decline over 27 years in total flying insect biomass in protected areas". PLOS ONE. Public Library of Science (PLoS). 12 (10): e0185809. Bibcode:2017PLoSO..1285809H. doi:10.1371/journal.pone.0185809. PMC 5646769. PMID 29045418.
  16. Pennisi, Elizabeth. "Common pesticide makes migrating birds anorexic". Science. Retrieved 19 September 2019.
  17. Bélanger, J.; Pilling, D., eds. (2019), The State of the World's Biodiversity for Food and Agriculture, Rome: FAO Commission on Genetic Resources for Food and Agriculture
  18. McGrath, Matt (22 February 2019), UN: Growing threat to food from decline in biodiversity, BBC
  19. In brief – The State of the World's Biodiversity for Food and Agriculture (PDF). Rome: FAO. 2019. Archived from the original (PDF) on 24 September 2019.
  20. Vidal, John (March 15, 2019). "The Rapid Decline Of The Natural World Is A Crisis Even Bigger Than Climate Change". The Huffington Post. Retrieved March 16, 2019.
  21. "Biodiversity". World Health Organization. Retrieved 3 May 2019.

Further reading

  • Worm, B.; Barbier, E. B.; Beaumont, N.; Duffy, J. E.; Folke, C.; Halpern, B. S.; Jackson, J. B. C.; Lotze, H. K.; Micheli, F.; Palumbi, S. R.; Sala, E.; Selkoe, K. A.; Stachowicz, J. J.; Watson, R. (2006-11-03). "Impacts of Biodiversity Loss on Ocean Ecosystem Services". Science. American Association for the Advancement of Science (AAAS). 314 (5800): 787–790. Bibcode:2006Sci...314..787W. doi:10.1126/science.1132294. PMID 17082450.
  • Waldron, Anthony; Miller, Daniel C.; Redding, Dave; Mooers, Arne; Kuhn, Tyler S.; Nibbelink, Nate; Roberts, J. Timmons; Tobias, Joseph A.; Gittleman, John L. (2017-10-25). "Reductions in global biodiversity loss predicted from conservation spending" (PDF). Nature. Springer Nature. 551 (7680): 364–367. Bibcode:2017Natur.551..364W. doi:10.1038/nature24295. hdl:10044/1/52628. PMID 29072294.
  • Charles Perrings (2008). Biodiversity Loss: Economic and Ecological Issues. Cambridge University Press. ISBN 978-0521588669.
  • Neil Griffin, ed. (2015). Biodiversity Loss in the 21st Century. Ml Books International - Ips. ISBN 978-1632390943.
  • Alexander Wood (2000). The Root Causes of Biodiversity Loss. Routledge. ISBN 978-1853836992.
  • Wilson EO, Peter FM, editors. Biodiversity. Washington (DC): National Academies Press (US); 1988. Chapter 2, The Loss of Diversity Causes and Consequences. Available from:
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.