Biconnected graph

In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices.

The property of being 2-connected is equivalent to biconnectivity, except that the complete graph of two vertices is usually not regarded as 2-connected.

This property is especially useful in maintaining a graph with a two-fold redundancy, to prevent disconnection upon the removal of a single edge (or connection).

The use of biconnected graphs is very important in the field of networking (see Network flow), because of this property of redundancy.


A biconnected undirected graph is a connected graph that is not broken into disconnected pieces by deleting any single vertex (and its incident edges).

A biconnected directed graph is one such that for any two vertices v and w there are two directed paths from v to w which have no vertices in common other than v and w.

Nonseparable (or 2-connected) graphs (or blocks) with n nodes (sequence A002218 in the OEIS)
VerticesNumber of Possibilities
1 0
2 1
3 1
4 3
5 10
6 56
7 468
8 7123
9 194066
10 9743542
11 900969091
12 153620333545
13 48432939150704
14 28361824488394169
15 30995890806033380784
16 63501635429109597504951
17 244852079292073376010411280
18 1783160594069429925952824734641
19 24603887051350945867492816663958981


See also


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.