# Ball (bearing)

Bearing balls are special highly spherical and smooth balls, most commonly used in ball bearings, but also used as components in things like freewheel mechanisms. The balls come in many different grades. These grades are defined by bodies such as the American Bearing Manufacturers Association (ABMA), a body which sets standards for the precision of bearing balls. They are manufactured in machines designed specially for the job.

In 2008, the United States produced 5.778 billion bearing balls.[1]

Bearing balls are manufactured to a specific grade, which defines its geometric tolerances. The grades range from 2000 to 3, where the smaller the number the higher the precision. Grades are written "GXXXX", i.e. grade 100 would be "G100".[2][3] Lower grades also have fewer defects, such as flats, pits, soft spots, and cuts. The surface smoothness is measured in two ways: surface roughness and waviness.[3]

Size refers to how tight are on the size, as measured by two parallel plates in contact with the ball surface. The starting size is the nominal ball diameter, which is the nominal, or theoretical, ball diameter. The ball size is then determined by measuring the ball diameter variation, which is the difference between the largest and smallest diameter measurement. For a given lot there is a lot diameter variation, which is the difference between the mean diameter of the largest ball and the smallest ball of the lot.[3]

Sphericity, or deviation from spherical form,[3] refers to how much the ball deviates from a true spherical form (out of roundness). This is measured by rotating a ball against a linear transducer with a gauge force of less than 4 grams (0.14 oz). The resulting polar graph is then circumscribed with the smallest circle possible and the difference between this circumscribed circle and the nominal ball diameter is the variation.[3]

GradeSize range [in]Sphericity [in]Lot diameter variation [in]Nominal ball diameter tolerance [in]Maximum surface roughness (Ra) [μin]
30.006–20.0000030.000003±0.000030.5
50.006–60.0000050.000005±0.000050.8
100.006–100.000010.00001±0.00011.0
250.006–100.0000250.000025±0.00012.0
500.006–100.000050.00005±0.00033.0
1000.006–100.00010.0001±0.00055.0
2000.006–100.00020.0002±0.0018.0
10000.006–100.0010.001±0.005
GradeSphericity [mm]Lot diameter variation [mm]Nominal ball diameter tolerance [mm]Maximum surface roughness (Ra) [µm]
30.000080.00008±0.00080.012
50.000130.00013±0.00130.02
100.000250.00025±0.00130.025
250.00060.0006±0.00250.051
500.00120.0012±0.00510.076
1000.00250.0025±0.01270.127
2000.0050.005±0.0250.203
10000.0250.025±0.127

## Manufacture

The manufacture of bearing balls depends on the type of material the balls are being made from.

### Metal

Metal balls start as a wire. The wire is sheared to give a pellet with a volume approximately that of the ball with the desired outer diameter (OD). This pellet is then headed into a rough spherical shape. Next, the balls are then fed into a machine that de-flashes them. The machine does this by feeding the balls between two heavy cast iron[4] or hardened steel plates, called rill plates. One of the plates is held stationary while the other rotates. The top plate has an opening to allow balls to enter and exit the rill plates. These plates have fine circumferential grooves that the balls track in. The balls are run through the machine long enough so that each ball passes through many of these grooves, which ensures each ball is the same size, even if a particular groove is out of specification. The controllable machine variables are the amount of pressure applied, the speed of the plates, and how long the balls are left in the machine.[5]

During the operation coolant is pumped between the rill plates because the high pressure between the plates and friction creates considerable heat. The high pressure applied to the balls also induces cold working, which strengthens the balls.[5]

Sometimes the balls are then run through a soft grinding process afterward to improve precision. This is done in the same type of machine, but the rill plates are replaced with grinding stones.[4]

If the balls are steel they are then heat treated. After heat treatment they are descaled to remove any residue or by-products.[4]

The balls are then hard ground. They are ground in the same type of machine as used before, but either an abrasive is introduced into coolant or the rotating plate is replaced with a very hard fine-grain grinding wheel. This step can get the balls within ±0.0001 in (0.0025 mm). If the balls need more precision then they are lapped, again in the same type of machine. However, this time the rill plates are made of a softer material, usually cast iron, less pressure is applied, the plate is rotated slowly. This step is what gives bearing balls their shiny appearance and can bring the balls between grades 10 and 48.[4][5][6]

If even more precision is needed then proprietary chemical and mechanical processes are usually used.[4]

The inspection of bearing balls was one of the case studies in Frederick Winslow Taylor's classic Principles of Scientific Management.

### Plastic

Plastic bearing balls are made in the same manner as described above.[5]

### Ceramic

Ceramic bearing balls are made of sintered materials that are then ground to size and shape as above. Common materials include: silicon nitride (Si
3
N
4
) and zirconium dioxide (ZrO
2
).[7]

## Materials

Common materials include carbon steel, stainless steel, chrome steel, brass, aluminium, tungsten carbide, platinum, gold, titanium, plastic. Other less common materials include copper, monel, k-monel, lead, silver, glass, and niobium.[8]

Material comparison for common bearing balls[9]
MaterialUNS 52100Stainless steel 440CM50BG-42REX-20440NDURHaynes 25Si3N4BECU455C276
Hardness [HRC] 6058626266605070405040
Temperature limit [°F] 300300400400600300120015004005001000
Corrosion resistance[10] 13121455145
Cost[10] 11123155324
Availability[10] 11222453324
Magnetic MagneticMagneticMagneticMagneticMagneticMagneticNon-magneticNon-magneticNon-magneticMagneticMagnetic
Electrical Conductivity ConductiveConductiveConductiveConductiveConductiveConductiveConductiveNon-conductiveConductiveConductiveConductive
Size limit NoneNoneNoneNoneNoneNone1.5 in (38 mm)No Torque TubeNoneNone5 in (130 mm)
Relative fatigue life[10] 32445315111

## Atypical uses

One interesting atypical use for bearing balls is at San Francisco International Airport. The building is supported by 267 columns, each of which rests on a steel ball with a diameter of 5 feet (1.5 m). The ball sits in a concave foundation. If an earthquake occurs, the ground can move up to 20 inches (0.51 m) in any direction, as the columns roll on their bases. This is an effective way to separate the building from the movement of the ground. After the earthquake has ended, the columns are re-centered on their bases by the force of gravity.[11]

## References

1. Ball Definitions - The specification defines three parameters: surface integrity, size, and sphericity. The surface integrity refers to surface smoothness, hardness
2. ABMA Definitions, archived from the original on 2009-10-08, retrieved 2009-11-16
3. Manufacturing, archived from the original on 2009-05-07, retrieved 2009-07-02.
4. How do they get the balls in ball bearings so perfectly round and smooth?, retrieved 2009-07-01.
5. Production Process for a standard grade 24, Chrome Steel ball, archived from the original on 2008-05-17, retrieved 2009-07-02.
6. Ley, Wilfried; Wittmann, Klaus; Hallmann, Willi (2009-06-16). "Handbook of space technology". ISBN 978-0-470-69739-9. Cite journal requires `|journal=` (help)
7. Materials, retrieved 2009-07-03.
8. Ball Material Types, archived from the original on 2008-02-28, retrieved 2010-10-06.
9. Where 1 is the lowest and 5 is the highest
10. "Some Interesting Uses - How Bearings Work". HowStuffWorks.