Molecule mining

This page describes mining for molecules. Since molecules may be represented by molecular graphs this is strongly related to graph mining and structured data mining. The main problem is how to represent molecules while discriminating the data instances. One way to do this is chemical similarity metrics, which has a long tradition in the field of cheminformatics.

Typical approaches to calculate chemical similarities use chemical fingerprints, but this loses the underlying information about the molecule topology. Mining the molecular graphs directly avoids this problem. So does the inverse QSAR problem which is preferable for vectorial mappings.


Kernel methods

  • Marginalized graph kernel[1]
  • Optimal assignment kernel[2][3][4]
  • Pharmacophore kernel[5]
  • C++ (and R) implementation combining
    • the marginalized graph kernel between labeled graphs[1]
    • extensions of the marginalized kernel[6]
    • Tanimoto kernels[7]
    • graph kernels based on tree patterns[8]
    • kernels based on pharmacophores for 3D structure of molecules[5]

Maximum Common Graph methods

  • MCS-HSCS[9] (Highest Scoring Common Substructure (HSCS) ranking strategy for single MCS)
  • Small Molecule Subgraph Detector (SMSD)[10]- is a Java-based software library for calculating Maximum Common Subgraph (MCS) between small molecules. This will help us to find similarity/distance between two molecules. MCS is also used for screening drug like compounds by hitting molecules, which share common subgraph (substructure).[11]


Molecular query methods

Methods based on special architectures of neural networks

See also


  1. H. Kashima, K. Tsuda, A. Inokuchi, Marginalized Kernels Between Labeled Graphs, The 20th International Conference on Machine Learning (ICML2003), 2003. PDF
  2. H. Fröhlich, J. K. Wegner, A. Zell, Optimal Assignment Kernels For Attributed Molecular Graphs, The 22nd International Conference on Machine Learning (ICML 2005), Omnipress, Madison, WI, USA, 2005, 225-232. PDF
  3. H. Fröhlich, J. K. Wegner, A. Zell, Kernel Functions for Attributed Molecular Graphs - A New Similarity Based Approach To ADME Prediction in Classification and Regression, QSAR Comb. Sci., 2006, 25, 317-326. doi:10.1002/qsar.200510135
  4. H. Fröhlich, J. K. Wegner, A. Zell, Assignment Kernels For Chemical Compounds, International Joint Conference on Neural Networks 2005 (IJCNN'05), 2005, 913-918. CiteSeer
  5. P. Mahe, L. Ralaivola, V. Stoven, J. Vert, The pharmacophore kernel for virtual screening with support vector machines, J Chem Inf Model, 2006, 46, 2003-2014. doi:10.1021/ci060138m
  6. P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret and P. Vert, J.-P. (2004). "Extensions of marginalized graph kernels". Proceedings of the 21st ICML: 552–559.CS1 maint: multiple names: authors list (link)
  7. L. Ralaivola, S. J. Swamidass, S. Hiroto and P. Baldi (2005). "Graph kernels for chemical informatics". Neural Networks. 18 (8): 1093–1110. doi:10.1016/j.neunet.2005.07.009. PMID 16157471.CS1 maint: multiple names: authors list (link)
  8. P. Mahé and J.-P. Vert (2009). "Graph kernels based on tree patterns for molecules". Machine Learning. 75 (1): 3–35. arXiv:q-bio/0609024. doi:10.1007/s10994-008-5086-2. ISSN 0885-6125.
  9. J. K. Wegner, H. Fröhlich, H. Mielenz, A. Zell, Data and Graph Mining in Chemical Space for ADME and Activity Data Sets, QSAR Comb. Sci., 2006, 25, 205-220. doi:10.1002/qsar.200510009
  10. S. A. Rahman, M. Bashton, G. L. Holliday, R. Schrader and J. M. Thornton, Small Molecule Subgraph Detector (SMSD) toolkit, Journal of Cheminformatics 2009, 1:12. doi:10.1186/1758-2946-1-12
  12. R. D. King, A. Srinivasan, L. Dehaspe, Wamr: a data mining tool for chemical data, J. Comput.-Aid. Mol. Des., 2001, 15, 173-181. doi:10.1023/A:1008171016861
  13. L. Dehaspe, H. Toivonen, King, Finding frequent substructures in chemical compounds, 4th International Conference on Knowledge Discovery and Data Mining, AAAI Press., 1998, 30-36.
  14. A. Inokuchi, T. Washio, T. Okada, H. Motoda, Applying the Apriori-based Graph Mining Method to Mutagenesis Data Analysis, Journal of Computer Aided Chemistry, 2001, 2, 87-92.
  15. A. Inokuchi, T. Washio, K. Nishimura, H. Motoda, A Fast Algorithm for Mining Frequent Connected Subgraphs, IBM Research, Tokyo Research Laboratory, 2002.
  16. A. Clare, R. D. King, Data mining the yeast genome in a lazy functional language, Practical Aspects of Declarative Languages (PADL2003), 2003.
  17. M. Kuramochi, G. Karypis, An Efficient Algorithm for Discovering Frequent Subgraphs, IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9), 1038-1051.
  18. M. Deshpande, M. Kuramochi, N. Wale, G. Karypis, Frequent Substructure-Based Approaches for Classifying Chemical Compounds, IEEE Transactions on Knowledge and Data Engineering, 2005, 17(8), 1036-1050.
  19. C. Helma, T. Cramer, S. Kramer, L. de Raedt, Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds, J. Chem. Inf. Comput. Sci., 2004, 44, 1402-1411. doi:10.1021/ci034254q
  20. T. Meinl, C. Borgelt, M. R. Berthold, Discriminative Closed Fragment Mining and Perfect Extensions in MoFa, Proceedings of the Second Starting AI Researchers Symposium (STAIRS 2004), 2004.
  21. T. Meinl, C. Borgelt, M. R. Berthold, M. Philippsen, Mining Fragments with Fuzzy Chains in Molecular Databases, Second International Workshop on Mining Graphs, Trees and Sequences (MGTS2004), 2004.
  22. Meinl, T.; Berthold, M. R. (2004). "Hybrid Fragment Mining with MoFa and FSG" (PDF). Proceedings of the 2004 IEEE Conference on Systems, Man & Cybernetics (SMC2004).
  23. S. Nijssen, J. N. Kok. Frequent Graph Mining and its Application to Molecular Databases, Proceedings of the 2004 IEEE Conference on Systems, Man & Cybernetics (SMC2004), 2004.
  24. C. Helma, Predictive Toxicology, CRC Press, 2005.
  25. M. Wörlein, Extension and parallelization of a graph-mining-algorithm, Friedrich-Alexander-Universität, 2006. PDF
  26. K. Jahn, S. Kramer, Optimizing gSpan for Molecular Datasets, Proceedings of the Third International Workshop on Mining Graphs, Trees and Sequences (MGTS-2005), 2005.
  27. X. Yan, J. Han, gSpan: Graph-Based Substructure Pattern Mining, Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), IEEE Computer Society, 2002, 721-724.
  28. A. Karwath, L. D. Raedt, SMIREP: predicting chemical activity from SMILES, J Chem Inf Model, 2006, 46, 2432-2444. doi:10.1021/ci060159g
  29. H. Ando, L. Dehaspe, W. Luyten, E. Craenenbroeck, H. Vandecasteele, L. Meervelt, Discovering H-Bonding Rules in Crystals with Inductive Logic Programming, Mol Pharm, 2006, 3, 665-674 . doi:10.1021/mp060034z
  30. P. Mazzatorta, L. Tran, B. Schilter, M. Grigorov, Integration of Structure-Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity, J. Chem. Inf. Model., 2006, ASAP alert. doi:10.1021/ci600411v
  31. N. Wale, G. Karypis. Comparison of Descriptor Spaces for Chemical Compound Retrieval and Classification, ICDM, ''2006, 678-689.
  32. A. Gago Alonso, J.E. Medina Pagola, J.A. Carrasco-Ochoa and J.F. Martínez-Trinidad Mining Connected Subgraph Mining Reducing the Number of Candidates, In Proc. of ECML--PKDD, pp. 365–376, 2008.
  33. Xiaohong Wang, Jun Huan , Aaron Smalter, Gerald Lushington, Application of Kernel Functions for Accurate Similarity Search in Large Chemical Databases , in BMC Bioinformatics Vol. 11 (Suppl 3):S8 2010.
  34. Baskin, I. I.; V. A. Palyulin; N. S. Zefirov (1993). "[A methodology for searching direct correlations between structures and properties of organic compounds by using computational neural networks]". Doklady Akademii Nauk SSSR. 333 (2): 176–179.
  35. I. I. Baskin, V. A. Palyulin, N. S. Zefirov (1997). "A Neural Device for Searching Direct Correlations between Structures and Properties of Organic Compounds". J. Chem. Inf. Comput. Sci. 37 (4): 715–721. doi:10.1021/ci940128y.CS1 maint: multiple names: authors list (link)
  36. D. B. Kireev (1995). "ChemNet: A Novel Neural Network Based Method for Graph/Property Mapping". J. Chem. Inf. Comput. Sci. 35 (2): 175–180. doi:10.1021/ci00024a001.
  37. A. M. Bianucci; Micheli, Alessio; Sperduti, Alessandro; Starita, Antonina (2000). "Application of Cascade Correlation Networks for Structures to Chemistry". Applied Intelligence. 12 (1–2): 117–146. doi:10.1023/A:1008368105614.
  38. A. Micheli, A. Sperduti, A. Starita, A. M. Bianucci (2001). "Analysis of the Internal Representations Developed by Neural Networks for Structures Applied to Quantitative Structure-Activity Relationship Studies of Benzodiazepines". J. Chem. Inf. Comput. Sci. 41 (1): 202–218. CiteSeerX doi:10.1021/ci9903399. PMID 11206375.CS1 maint: multiple names: authors list (link)
  39. O. Ivanciuc (2001). "Molecular Structure Encoding into Artificial Neural Networks Topology". Roumanian Chemical Quarterly Reviews. 8: 197–220.
  40. A. Goulon, T. Picot, A. Duprat, G. Dreyfus (2007). "Predicting activities without computing descriptors: Graph machines for QSAR". SAR and QSAR in Environmental Research. 18 (1–2): 141–153. doi:10.1080/10629360601054313. PMID 17365965.CS1 maint: multiple names: authors list (link)

Further reading

  • Schölkopf, B., K. Tsuda and J. P. Vert: Kernel Methods in Computational Biology, MIT Press, Cambridge, MA, 2004.
  • R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons, 2001. ISBN 0-471-05669-3
  • Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997. ISBN 0-521-58519-8
  • R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, 2000. ISBN 3-527-29913-0
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.