List of graphs by edges and vertices

This sortable list points to the articles describing various individual (finite) graphs[1]. The columns 'vertices', 'edges', 'radius', 'diameter', 'girth', 'P' (whether the graph is planar), χ (chromatic number) and χ' (chromatic index) are also sortable, allowing to search for a parameter or another.

See also Graph theory for the general theory, as well as Gallery of named graphs for a list with illustrations.

List

nameverticesedgesradiusdiam.girthPχχ'
Iofinova-Ivanov-110-vertex1101657710F23
120-cell600120015155F34
Balaban 3-10-cage701056610F23
Balaban 3-11-cage1121686811F33
Barnette–Bosák–Lederberg graph3869594T33
Bidiakis cube1218334T33
Biggs–Smith graph102153779F33
Blanuša snarks1827445F34
Brinkmann graph2142335T45
Brouwer–Haemers graph81810223F721
Bull graph55233T33
Butterfly graph56123T34
Cameron graph2313465223FN/AN/A
Chang graphs28168223F712
Chvátal graph1224224F44
Clebsch graph1640224F45
Coxeter graph2842447F33
Cubical graph812334T23
Cuboctahedral graph1224333T34
Dejter graph112336774FN/AN/A
Desargues graph2030556F23
Descartes snark210315N/AN/A5N/AN/A4
Diamond graph45123T33
Dodecahedral graph (20-fullerene)2030555T33
Double-star snark3045446F34
Dürer graph1218343T33
Dyck graph3248556F23
Ellingham–Horton 54-graph54819106F23
Ellingham–Horton 78-graph781177136F23
Errera graph1745343T46
F26A graph2639556F23
Flower snark J(5)2030445F34
Folkman graph2040344F24
Foster 5-5-cage3075335F45
Foster graph901358810F23
Franklin graph1218334F23
Fritsch graph921223T46
Frucht graph1218343T33
Gewirtz graph56280224F410
26-fullerene graph (26-fullerene)2639565T33
Goldner–Harary graph1127223T48
Golomb graph1018233T46
Gosset graph56756333F1427
Gray graph5481668F23
Grötzsch graph1120224F45
Hall–Janko graph1001800223F1036
Harborth graph52104693T34
Harries graph701056610F23
Harries–Wong graph701056610F23
Heawood 3-6-cage graph1421336F23
Herschel graph1118344T24
Hexagonal truncated trapezohedron (24-fullerene)2436555T33
Higman–Sims graph1001100224F622
Hoffman graph1632344F24
Hoffman–Singleton 7-5-cage graph50175225F47
Holt graph2754335F35
Horton graph9614410106F23
Icosahedral graph1230333T45
Icosidodecahedral graph3060553T34
Kittell graph2363343T47
Klein graph (cubic)5684667F33
Klein graph (7-valent)2484333F47
Krackhardt kite graph1018243T46
Livingstone graph2661463445FN/A11
Ljubljana graph1121687810F23
Loupekine snark (first)2233345F34
Loupekine snark (second)2233345F34
Markström graph2436563T33
McGee graph2436447F33
McLaughlin graph27515400223FN/A113
Meredith graph70140784F35
Meringer 5-5-cage graph3075335F35
Möbius–Kantor graph1624446F23
Moser spindle711223T44
Nauru graph2436446F23
Null graph0000N/AT00
Octahedral graph612223T34
Paley graph of order 131339223F57
Pappus graph1827446F23
Perkel graph57171335F37
Petersen 3-5-cage graph1015225F34
Poussin graph1539333T46
Rhombicosidodecahedral graph60120883T34
Rhombicuboctahedral graph2448553T34
Robertson 4-5-cage graph1938335F35
Robertson–Wegner 5-5-cage graph3075335F45
Schläfli graph27216223F917
Shrikhande graph1648223F46
Snub cubical graph2460443T35
Snub dodecahedral graph60150773T45
Sousselier graph1627235F35
Sylvester graph3690335F45
Szekeres snark5075675F34
Tetrahedral graph46113T43
Thomsen graph69224F23
Tietze's graph1218333F34
Triangle graph33113T33
Truncated cubical graph2436663T33
Truncated cuboctahedral graph4872994T23
Truncated dodecahedral graph609010103T33
Truncated icosahedral graph (60-fullerene)6090995T33
Truncated icosidodecahedral graph12018015154T23
Truncated octahedral graph2436664T23
Truncated tetrahedral graph1218333T33
Tutte 3-12-cage1261896612F23
Tutte graph4669584T33
Tutte 3-8-cage graph3045448F23
Wagner graph812224F33
Watkins snark5075775F34
Wells graph3280445F45
Wiener–Araya graph4267574T34
Wong 5-5-cage graph3075335F45

References

  1. R. Diestel, Graph Theory, p.8. 3rd Edition, Springer-Verlag, 2005
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.