# Ellipsoidal coordinates

Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system $(\lambda ,\mu ,\nu )$ that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces, the ellipsoidal coordinate system is based on confocal quadrics.

## Basic formulae

The Cartesian coordinates $(x,y,z)$ can be produced from the ellipsoidal coordinates $(\lambda ,\mu ,\nu )$ by the equations

$x^{2}={\frac {\left(a^{2}+\lambda \right)\left(a^{2}+\mu \right)\left(a^{2}+\nu \right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)}}$ $y^{2}={\frac {\left(b^{2}+\lambda \right)\left(b^{2}+\mu \right)\left(b^{2}+\nu \right)}{\left(b^{2}-a^{2}\right)\left(b^{2}-c^{2}\right)}}$ $z^{2}={\frac {\left(c^{2}+\lambda \right)\left(c^{2}+\mu \right)\left(c^{2}+\nu \right)}{\left(c^{2}-b^{2}\right)\left(c^{2}-a^{2}\right)}}$ where the following limits apply to the coordinates

$-\lambda Consequently, surfaces of constant $\lambda$ are ellipsoids

${\frac {x^{2}}{a^{2}+\lambda }}+{\frac {y^{2}}{b^{2}+\lambda }}+{\frac {z^{2}}{c^{2}+\lambda }}=1,$ whereas surfaces of constant $\mu$ are hyperboloids of one sheet

${\frac {x^{2}}{a^{2}+\mu }}+{\frac {y^{2}}{b^{2}+\mu }}+{\frac {z^{2}}{c^{2}+\mu }}=1,$ because the last term in the lhs is negative, and surfaces of constant $\nu$ are hyperboloids of two sheets

${\frac {x^{2}}{a^{2}+\nu }}+{\frac {y^{2}}{b^{2}+\nu }}+{\frac {z^{2}}{c^{2}+\nu }}=1$ because the last two terms in the lhs are negative.

The orthogonal system of quadrics used for the ellipsoidal coordinates are confocal quadrics.

## Scale factors and differential operators

For brevity in the equations below, we introduce a function

$S(\sigma )\ {\stackrel {\mathrm {def} }{=}}\ \left(a^{2}+\sigma \right)\left(b^{2}+\sigma \right)\left(c^{2}+\sigma \right)$ where $\sigma$ can represent any of the three variables $(\lambda ,\mu ,\nu )$ . Using this function, the scale factors can be written

$h_{\lambda }={\frac {1}{2}}{\sqrt {\frac {\left(\lambda -\mu \right)\left(\lambda -\nu \right)}{S(\lambda )}}}$ $h_{\mu }={\frac {1}{2}}{\sqrt {\frac {\left(\mu -\lambda \right)\left(\mu -\nu \right)}{S(\mu )}}}$ $h_{\nu }={\frac {1}{2}}{\sqrt {\frac {\left(\nu -\lambda \right)\left(\nu -\mu \right)}{S(\nu )}}}$ Hence, the infinitesimal volume element equals

$dV={\frac {\left(\lambda -\mu \right)\left(\lambda -\nu \right)\left(\mu -\nu \right)}{8{\sqrt {-S(\lambda )S(\mu )S(\nu )}}}}\ d\lambda d\mu d\nu$ and the Laplacian is defined by

$\nabla ^{2}\Phi ={\frac {4{\sqrt {S(\lambda )}}}{\left(\lambda -\mu \right)\left(\lambda -\nu \right)}}{\frac {\partial }{\partial \lambda }}\left[{\sqrt {S(\lambda )}}{\frac {\partial \Phi }{\partial \lambda }}\right]\ +$ ${\frac {4{\sqrt {S(\mu )}}}{\left(\mu -\lambda \right)\left(\mu -\nu \right)}}{\frac {\partial }{\partial \mu }}\left[{\sqrt {S(\mu )}}{\frac {\partial \Phi }{\partial \mu }}\right]\ +\ {\frac {4{\sqrt {S(\nu )}}}{\left(\nu -\lambda \right)\left(\nu -\mu \right)}}{\frac {\partial }{\partial \nu }}\left[{\sqrt {S(\nu )}}{\frac {\partial \Phi }{\partial \nu }}\right]$ Other differential operators such as $\nabla \cdot \mathbf {F}$ and $\nabla \times \mathbf {F}$ can be expressed in the coordinates $(\lambda ,\mu ,\nu )$ by substituting the scale factors into the general formulae found in orthogonal coordinates.

## Bibliography

• Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 663.
• Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9.
• Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. pp. 101–102. LCCN 67025285.
• Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 176. LCCN 59014456.
• Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 178–180. LCCN 55010911.
• Moon PH, Spencer DE (1988). "Ellipsoidal Coordinates (η, θ, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd, 3rd print ed.). New York: Springer Verlag. pp. 40–44 (Table 1.10). ISBN 0-387-02732-7.

### Unusual convention

• Landau LD, Lifshitz EM, Pitaevskii LP (1984). Electrodynamics of Continuous Media (Volume 8 of the Course of Theoretical Physics) (2nd ed.). New York: Pergamon Press. pp. 19–29. ISBN 978-0-7506-2634-7. Uses (ξ, η, ζ) coordinates that have the units of distance squared.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.