# Conjunction introduction

**Conjunction introduction** (often abbreviated simply as **conjunction** and also called **and introduction**)[1][2][3] is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof. It is the inference that if the proposition *p* is true, and proposition *q* is true, then the logical conjunction of the two propositions *p and q* is true. For example, if it is true that "it's raining", and it is true that "I'm inside", then it is true that "it's raining and I'm inside". The rule can be stated:

Transformation rules |
---|

Propositional calculus |

Rules of inference |

Rules of replacement |

Predicate logic |

where the rule is that wherever an instance of "" and "" appear on lines of a proof, a "" can be placed on a subsequent line.

## Formal notation

The *conjunction introduction* rule may be written in sequent notation:

where and are propositions expressed in some formal system, and is a metalogical symbol meaning that is a syntactic consequence if and are each on lines of a proof in some logical system;

## References

- Hurley, Patrick (1991).
*A Concise Introduction to Logic 4th edition*. Wadsworth Publishing. pp. 346–51. - Copi and Cohen
- Moore and Parker