Clausius–Duhem inequality

Clausius–Duhem inequality in terms of the specific entropy

The Clausius–Duhem inequality can be expressed in integral form as

In this equation is the time, represents a body and the integration is over the volume of the body, represents the surface of the body, is the mass density of the body, is the specific entropy (entropy per unit mass), is the normal velocity of , is the velocity of particles inside , is the unit normal to the surface, is the heat flux vector, is an energy source per unit mass, and is the absolute temperature. All the variables are functions of a material point at at time .

In differential form the Clausius–Duhem inequality can be written as

where is the time derivative of and is the divergence of the vector .

Clausius–Duhem inequality in terms of specific internal energy

The inequality can be expressed in terms of the internal energy as

where is the time derivative of the specific internal energy (the internal energy per unit mass), is the Cauchy stress, and is the gradient of the velocity. This inequality incorporates the balance of energy and the balance of linear and angular momentum into the expression for the Clausius–Duhem inequality.


The quantity

is called the dissipation which is defined as the rate of internal entropy production per unit volume times the absolute temperature. Hence the Clausius–Duhem inequality is also called the dissipation inequality. In a real material, the dissipation is always greater than zero.

See also


  1. Truesdell, Clifford (1952), "The Mechanical foundations of elasticity and fluid dynamics", Journal of Rational Mechanics and Analysis, 1: 125–300.
  2. Truesdell, Clifford & Toupin, Richard (1960), "The Classical Field Theories of Mechanics", Handbuch der Physik, III, Berlin: Springer.
  3. Frémond, M. (2006), "The Clausius–Duhem Inequality, an Interesting and Productive Inequality", Nonsmooth Mechanics and Analysis, Advances in mechanics and mathematics, 12, New York: Springer, pp. 107–118, doi:10.1007/0-387-29195-4_10, ISBN 0-387-29196-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.